
1

Pipelined Data Encryption Standard (DES)

Brute Force Attack Unit

S. Foucher, S. Sadhukha and Y. Ton-That

Department of Electrical and Computer Engineering, McGill University, Montreal, Canada

{simon.foucher, shajib.sadhukha, yvan.tonthat}@mail.mcgill.ca

Abstract—Brute force cryptic attacks is the only

cryptographic approach which guarantees a positive result,

provided enough resources are available. Since DES uses block

cipher encryption instead of arithmetic algorithms, modern

developments in high performance FPGAs have made it a

feasible target for brute force attacks because of its short 56 bit

key. We developed a system capable of running such an attack

on a chosen subset of keys within a reasonable amount of time.

By pipelining the 18 DES decryption stages, we implemented 6

decryption unit working in parallel on a single Cyclone II FPGA

board capable of running 0.84 billion keys per second at

130MHz. By matching the outputted decrypted block of 64 bits

with prior knowledge of the original data encrypted, we were

able to generate a positive key match in 9.7 days on average.

Even though this might seem a bit slow, we also designed a

software equivalent of our device which would require thousands

of years to perform the same task, due to the linear arithmetic

based processing of regular PC architecture. [Word count = 3244]

1. INTRODUCTION

HE Data Encryption Standard (DES) was released in 1974

by IBM to serve as a secure cryptographic standard to

protect confidentiality of ATM communications. Its ease of

implementation in hardware, thought to be one of DES‟s

greatest strength ended up being one of its most significant

vulnerability by means of hardware driven brute force cryptic

attacks [3]. Unlike arithmetic algorithms, the block ciphers

that perform DES encryption can easily be implemented on

FPGAs. By pipelining the 18 stages of encryption we have

developed a design that can run at 140MHz top speed on an

Altera Cyclone II FPGA board. To enhance the feasibility of

our design, we have restrained ourselves to a subset of the 56

bit key space containing only alpha numeric ASCII

characters, which reduced the scanning task by a factor of

21,500. The motivation for that choice of subset space is an

attempt to exploit human laziness in key selection for

encryption. At each key iteration, the 64 bit cipher text

provided is decrypted and the resulting data is matched with

expected value of the plaintext using a lookup table. Our

compact architecture enabled us to fit six such devices into a

single FPGA, which are capable of processing 0.84 billion

keys per second and perform a full attack in three days. Even

though this might seem a bit slow, by developing and testing a

C# implementation of DES encryption, we found that a

software equivalent would require 20,770 years to perform the

same task

2. ATTACK UNIT COMPONENTS

To decrypt a 64-bit block of data using the DES algorithm, we

used the following basic building blocks: an Inverse Key

Scheduling unit, a Decrypter System, a Decryption Unit, a

Key Generator unit, and a Look-Up Table (LUT). We were

also able to easily design an encryption system by building a

regular Key Scheduling unit, which when integrated in the

Decryption unit, transforms it into an Encryption Unit

(Because of that symmetry in encryption/decryption, the terms

„Encryption Unit‟ and „Decryption Units‟ might be

interchanged in this paper, but refer to the same circuit block.

The only difference between and Encrypter and a Decrypter is

the Key Scheduler which provides the sub keys used. The

regular key scheduler is used when encrypting, and the

reverse key scheduler when decrypting).

2.1. Key Scheduler

Figure 1 presents the structure of the key scheduler, which

accepts a 56-bit key input and through a series of

permutations, shifts and re-combinations outputs sixteen 48-

bit keys that are to be used to encrypt the message data.

The original key is actually 64 bits in size, but 8 of those

bits are parity bits which are only of significance during the

transmission of the key. The key scheduler outputs 16 sub-

keys K1 to K16. Those sub-keys are defined as:

 𝐾𝑛 = 𝐹𝑆 𝑛, 𝐾𝐸𝑌 (1)

where KS represents a function which takes an integer in the

range from 1 to 16 and a KEY as inputs, and outputs a sub-

key Kn. [1]

T

2
ORIGINAL KEY

PERMUTATED

CHOICE 1

C0 ROL 1 D0 ROL 1

56 bits

28 bits 28 bits

C1 ROL 1 D1 ROL 1

28 bits 28 bits

Register

C2 ROL 2 D2 ROL 2

28 bits 28 bits

Register

C3 ROL 2 D3 ROL 2

28 bits 28 bits

Register

C15 ROL 1 D15 ROL 1

28 bits

28 bits 28 bits

Register

... ...

28 bits
28 bits

K16

Register

28 bits

48 bits

48 bits

48 bits

48 bits

48 bits

PERMUTATED

CHOICE 2

PERMUTATED

CHOICE 2

PERMUTATED

CHOICE 2

PERMUTATED

CHOICE 2

PERMUTATED

CHOICE 2

56 bits

K15

K3

K2

K1

Fig. 1. Structure of the key scheduler

The 56 bits of the original key are fed to the key

scheduler‟s first permutation unit (Permuted_Choice1.vhd),

which selects specific bits from the 56 bits of the input key

and re-arranges them into two output streams (C0 and D0) of

28 bit length each. Each output stream is then left-shifted

either 1 or two places respectively (depending on the stage) by

the “shift by 1” component (ShiftLeftBy1.vhd) or the “shift by

2” component (ShiftLeftBy2.vhd). The shifted outputs are

then recombined through the second key permutation unit

(Permuted_Choice2.vhd), the output of which is the stage 1

sub-key. The process of left-shifting (by one or two places as

appropriate) and recombining is then repeated 15 times for a

total of 16 key stages.

2.2. Encrypter System

Once the key scheduling has been performed, the next step is

to prepare the original data block for the actual encryption.

This is done by passing the data block through a permutation

called the Initial Permutation. This permutation also has an

inverse, called the Final Permutation, and it is used in the final

stage.

Once the original data block preparation has been

completed, the actual encryption is performed by the main

DES algorithm through intricate key-dependent computations.

The 64-bit block of input data is first split into two halves.

The core algorithm of the encrypter, performed by the

encryption units, is then applied to those halves 16 times,

making up the 16 rounds of standard DES. The high-level

view of the encrypter is shown on the right in Figure 2.

The final consideration with the encrypter was to ensure

that the sub-keys are applied to the middle stages in order,

from K1 and K16.

2.3. Encryption Unit

Figure 3 illustrates the structure of the encryption unit used in

the middle pipeline stages of the encrypter. The purpose of

that unit is to perform key-dependent computations via the

Feistel function f(R, K).

Once the input data is split into two halves of 32 bits,

denoted as L and R, the Feistel function operates on R. Its

structure consists of four stages:

1) Expansion – the 32-bit half-block is expanded to 48 bits

using the expansion permutation. The extra bits are

provided by duplicating some of the bits.

2) Key mixing – the result from the expansion stage is

combined with a sub-key using an XOR operation.

3) Substitution – after mixing in the sub-key, the block is

divided into eight 6-bit pieces before processing by the

substitution box. The substitution box then replaces each

of its six input bits with four output bits according to a

non-linear transformation, provided in the form of a

lookup table. The substitution box provides the core of

the security of DES. Without the substitution box, the

cipher would be linear and trivially breakable [3].

4) Permutation – finally, the 32 output bits from the

substitution stage are rearranged according to a fixed

permutation.

The Feistel function is always applied to R and the result is

then combined with L using an XOR operation. The result is

finally stored as the next stage‟s R. The next stage‟s L is

simply the previous stage‟s R. Those operations can be

defined as follows:

 𝐿′ = 𝑅 (2)

 𝑅′ = 𝐿 𝑥𝑜𝑟 𝑓(𝑅, 𝐾) (3)

This process is repeated 16 times, making up the 16 rounds

of standard DES. Finally, in the final stage the order of the

blocks is switched before they are recombined through the

final permutation.

2.4. Inverse Key Scheduler

Figure 4 illustrates the structure of the inverse key scheduler.

It is nearly identical to the original key scheduler in every

regard, the sole difference being the order in which the sub

keys are generated [1]. In the original key scheduler, the sub-

keys were generated through a combination of left shifts and

permutations. In the inverse key scheduler, since the last sub-

key K16 is actually needed first, it must be generated first.

Thus, the total number of left shifts applied to each half of the

.

3

INITIAL

PERMUTATION

64 bits

64 bits

32 bits 32 bits

Register

48 bits K1

Register

32 bits32 bits

ENCRYPTION UNIT

48 bits K2

Register

32 bits32 bits

ENCRYPTION UNIT

48 bits K3

Register

32 bits32 bits

ENCRYPTION UNIT

32 bits32 bits

... ...

Register

48 bits K15

Register

32 bits32 bits

ENCRYPTION UNIT

48 bits K16

Register

FINAL

PERMUTATION

64 bits

32 bits 32 bits

ORIGINAL DATA BLOCK

64 bits

ENCRYPTED DATA BLOCK

ENCRYPTION UNIT

32 bits32 bits

Fig. 2. Structure of the encrypter

input key (C0 and D0) from all sub-stages were added up to

determine the shift number necessary to produce K16. So at

the first stage of the inverse key scheduler, C0 and D0 must

both be shifted 28 times to the left (actually since C0 and D0

are both 28 bits long this amounts to doing nothing). For each

subsequent stage, instead of performing a large amount of left

shifts, the number by which to shift left is subtracted from 28

to obtain the equivalent number of right shift. As an example,

the second stage of the Inverse Key Scheduler needs the input

key left shifted by 28:

 28Data Size − 26Left Shift = 2Equivalent Right Shift (4)

For all other aspects of the Inverse Key Scheduler, please

refer the section for the original Key Scheduler.

LEFT HALF BLOCK

48 bits

32 bits

XOR

48 bits

SUBSTITUTION

48 bits

6 bits 6 bits 6 bits 6 bits 6 bits 6 bits 6 bits 6 bits

4 bits 4 bits 4 bits 4 bits 4 bits 4 bits 4 bits 4 bits

32 bits

32 bits

SUBKEY

32 bits

32 bits

EXPANSION

RIGHT HALF BLOCK

NEW RIGHT
HALF BLOCK

XOR

NEW LEFT
HALF BLOCK

PERMUTATION

Fig. 3. Internal structure of the encryption unit

2.5. Decrypter System

The same algorithm is used for encryption and decryption. As

such, to build the decrypter we simply use the structure of the

encrypter as illustrated in Figure 2. The sole different is that

the sub-keys are applied in reverse order, from K16 to K1. The

structure of the decrypter is presented in Figure 5. [1]

2.6. Key Generator Unit

Note: in the following section, we will use the word „digit‟ to

represent a 7 bit alphanumeric ASCII character.

The key generator unit takes care of generating the keys

which are used to conduct the attack. Since the entire 2
56

 key

space was an unfeasible task for our project, we restrained

ourselves to a subset of keys containing only ASCII

alphanumeric. The unit acts like an 8 digit modulo 62 counter,

which outputs letters a-z, then A-Z, then numbers 0-9 in 7-bit

ASCII format (8 ASCII characters at 7 bits each gives us the

required 56 bit key). Instead of having six key generators (one

for every decrypter), we used a single component which

outputs six distinct keys per clock cycle. The primary

motivations for this architectural choice were first, a reduction

in hardware space by eliminating redundancies and secondly,

a centralize unit with ease of future modification to

.

4

GENERATED KEY

PERMUTATED

CHOICE 1

C0 ROL 28 D0 ROL 28

56 bits

28 bits 28 bits

C1 ROR 1 D1 ROR 1

28 bits 28 bits

Register

C2 ROR 2 D2 ROR 2

28 bits 28 bits

Register

C3 ROR 2 D3 ROR 2

28 bits 28 bits

Register

C15 ROR 1 D15 ROR 1

28 bits

28 bits 28 bits

Register

... ...

28 bits
28 bits

Register

28 bits

KEY

GENERATOR

56 bits

DONE

48 bits

48 bits

48 bits

48 bits

48 bits

PERMUTATED

CHOICE 2

PERMUTATED

CHOICE 2

PERMUTATED

CHOICE 2

PERMUTATED

CHOICE 2

PERMUTATED

CHOICE 2

K16

K15

K14

K2

K1

Fig. 4. Structure of the inverse key scheduler

accommodate more decrypter units if implemented in larger

boards. The chosen architecture exploits the redundancies in

having six key generators by splitting the counter into two

parts: the 7 least significant digits of the key (the common

key) and the single most significant digit of the key (the

specific key). While the common key is the same for every six

keys outputted on the rising edge of the clock, the specific

byte is different for every key generated. For example, key1

will have a specific key ranging from „a‟ to „k‟, key2‟s

specific key will range from „l‟ to „v‟, etc… The common key

ranges from „aaaaaaa‟ to „9999999‟ and gets incremented at

every clock pulse. By appending every individual specific key

with the common key, we can generate 6 distinct keys at

every clock pulse. Following this example, key1 will start at

„aaaaaaaa‟, while key2 is at „laaaaaaa‟, all the way to key6

which starts at „0aaaaaaa‟. At the next clock pulse, key1 will

be aaaaaaab‟, key2 will be „laaaaaab‟, etc… The scan will be

complete when key1 reaches „k9999999‟, key2 reaches

„v9999999‟, key6 reaches „99999999‟, etc… (Note that only

alphanumeric characters are scanned, so there is a jump from

„z‟ to „A‟, from „Z‟ to „0‟, and a resetting jump from „9‟ back

to the starting point „a‟)

GENERATED KEY
INITIAL

PERMUTATION

64 bits

64 bits

32 bits 32 bits

Register

48 bits K16

Register

32 bits32 bits

ENCRYPTION UNIT

48 bits K15

Register

32 bits32 bits

ENCRYPTION UNIT

48 bits K14

Register

32 bits32 bits

ENCRYPTION UNIT

32 bits32 bits

... ...

Register

48 bits K2

Register

32 bits32 bits

ENCRYPTION UNIT

48 bits K1

Register

FINAL

PERMUTATION

64 bits

32 bits 32 bits

56 bits

56 bits

56 bits

56 bits

...

56 bits

56 bits

56 bits

56 bits

64 bits

56 bits

MATCH

LOOK-UP

ENCRYPTED DATA BLOCK

64 bits

DECRYPTED DATA BLOCK

POTENTIAL

KEY

ENCRYPTION UNIT

32 bits32 bits

Fig. 5. Structure of the decrypter system

With minimal modifications, this design could easily

accommodate up to 62 keys/clock cycle by simply splitting

the load of the six current specific keys. At 62 keys/clock,

every specific key would be hard wired to a single

alphanumeric character (a-z, A-Z and 0-9). We could also

easily modify the key generator to make it scan all the 56-bit

key space in order to perform a full brute force attack.

It is also worth a mention that the system‟s critical path

resides within one of these transitions, which would be very

difficult to pipeline.

2.7. Lookup Table

The basic principle of a brute force attack is to try and decrypt

a message with every possible key combination, thereby

ensuring a positive result. Once the encrypted data has been

decrypted with a given key, a secondary component validates

this data to look for coherence. One could use character

frequency analysis matched with the sender's language, a

dictionary lookup component, or any previous knowledge of

the encrypted message. (For example, during WWII, the allies

would match the final characters of encoded messages with

"Hail Furor").

For our purpose, we implemented a lookup component

which matches the deciphered data with a user inputted 64-bit

5

vector. After each attempt to decrypt, this component will

compare the output of all 6 decrypters with the user supplied

64-bit vector of expected data and send out a flag signal

whenever a match is found, as well as the key used to

generate the match.

2.8. Decrypter Nest

The Decrypter Nest is a central management unit controlling

several decrypters (six in our case, because of hardware

mapping restriction), all working in parallel on a subset of

keys provided by the key generator. The decrypter nest

receives the first block of 64-bit encrypted message data to be

decrypted (either via I/O or hard wired into the VHLD code).

It transmits this vector to every decrypter unit which all

performs a DES decryption using keys provided by the key

generator. After the process and lookup check, the decrypters

send their results back to the Nest (match and the used key in

that case). The match lines are ORed from the decrypters into

the nest‟s output port, and the output key used are multiplexed

(As discussed in the analysis section of this report, it was

statistically unnecessary to make provision in the advent of

having two units finding a match simultaneously). The Nest

has three informative output ports: “PotentialKeyFound”

which gets asserted when a match is found; “PotentialKey”

which outputs the potential key used to generate the previous

flag; and “Finished”, which indicates that the key generator

has exhausted all its list of keys.

3. PIPELINING

In order to speed-up our brute force search, the decrypter has

been pipelined into 18 stages such that it can process one key

per clock pulse. Since pipelining only increases the

throughput of the system when processing a stream of data, it

doesn‟t make sense to pipeline the encrypter. However,

because we are using the exact same structure for both

encryption and decryption, we decided to pipeline our

encrypter and then use its code to implement the decrypter

used in the nest to perform the attack.

Registers were inserted in-between each pipeline stage and

clocked synchronously. The time between each clock signal

was set to be greater than the longest delay between all stages

such that when the registers are clocked, the data that is

written to them is the final result of the previous stage. (To

our surprise, the critical path actually happened to reside

within the key generator, which cannot be pipelined). The

logic within the stages is, therefore, purely asynchronous.

The key scheduler was also designed using a pipelined

configuration. A register was placed immediately after every

shift unit, making up for the 17 pipeline stages of the key

scheduler. We also had to ensure that the key scheduler and

encrypter (or the inverse key scheduler and decrypter) were

properly synchronized such that a sub-key is immediately

available at each decryption stage.

4. DISCUSSION

4.1. Hardware Implementation

The development of our components was made and debugged

using Model Sim SE V5.8 and the „Place and Route‟ analysis,

the .sof file generation as well as hardware implementation

was done using Altera Quartus II V8.0. Our design was

successfully implemented on a Cyclone II (EP2C35F672C6)

FPGA board. Even though our design is capable of running at

a maximum clock speed of 130MHz (140MHz without the

LED display), the target hardware chosen only provides us

with a 50MHz clock, thereby degrading our performance by a

factor of three.

In order to minimize hardware overhead, the outputted key

was transmitted to a basic decoder which translated it to LED

signals sent to the board‟s eight segments LED display. Since

it was impossible to distinguish between capital and small

letters with the basic eight segments (for example O, o and 0),

a single mono sized alphabet was coded using a lookup table,

and bit 6 of every ASCII character (1=small letter, 0 = capital)

was inverted and sent out to a LED light corresponding to a

LED segment decoder. (Therefore, when reading the key, a lit

up light would indicate that that character was a capital letter)

Since every individual decryption units took up 15% of the

target hardware‟s resources, we decided to implement 6 of

them in the nest, which would total 90% of resources,

allowing 10% for overhead. Because of great compiler

technology and redundancies in our design, the full unit

(including the entire user interface overhead) took only 80%

of available logic elements (23,725 Combinational Functions

and 7,840 dedicated logic registers). Since at this level of

occupancy, the Trace and Route complexity starts to increase

exponentially, we were not able to fit a 7
th
 decrypter into the

nest.

4.2. Performance

Since the Cyclone II board only provided us with a 50MHz

clock, our design was forced to run slower than its maximum

potential. At this speed, our system can run the entire chosen

subset key space on average in 25 days (50 days worst case).

At maximum clock frequency, this time is reduced to 8.9

days. Even if this might seem a little slow, it is worth

mentioning that we are able to process 0.84 billion

keys/second, so we could recycle our machine to encrypt data

at a rate of 53.7MB/second. We also developed a C# software

version of our device, and a comparison in performance is

presented in the following table (note that the C# code was

not optimized for performance):

TABLE 1

Speedup gained by Hardware versus Software

 Dual Core 1.7 GHz PC 140 MHz FPGA

Keys/Sec 333 840,000

Ave. Time/Key 3.00 mS 1.19 nS

Ave. time/Attack 7,581,255 Days

(or 20,770 Years)

8.9 Days

6

The most widely known commercial alternative for DES

brute force attacks is the Copacabana machine (abbreviation

of cost-optimized parallel code breaker). This device is

available for about $10,000 and, with a cluster of 120 FPGA

cores, is capable of running an exhaustive 56-bit search in a

matter of weeks. [4]

4.3. Future improvements

The possibility of more than one decrypter in the nest finding

a key match at the same time did not escape to us. Based on

the Birthday Paradox, the number of inputs to a Hashing

function required to generate a hash collision is given by

2
(output bits/2)

 [5]. Using this as an upper bound (the DES is a

Hash table optimized to avoid differential analysis, so that

these collisions are minimized) we can estimate that the

biggest number of keys which will generate the same output is

2
32

, which on a key space of 2
56

 gives the probability of a

collision p = 5.96*10
-8

. Using a binomial expansion, we can

conclude that having two collisions when running six

decrypters has a probability of (6C2)*p
2
*(1-p)

4
 = 5.32810

-14
.

Based on this extremely low probability, which is an upper

bound, no provisions were made to account for that

possibility.

This also tells us that the upper bound expected number of

potential keys found can be given by E(x) = n*p, where n =

62
8
 (the number of keys we are exploring), which is just about

13 million. (Note once again that this is an upper bound for

linear hash functions and that DES is a non linear system

optimized to reduce this number). At the present moment, our

system is incapable of dealing with such a large number of

keys. A good improvement would be to feed those keys to a

second stage decrypter which could then use either more

knowledge on the encrypted text, or run various data

coherency tests (i.e. dictionary lookups, ASCII lookups, etc.).

This improvement is presented in Figure 6. The expected

number of potential keys found on that second level of

decrypter would be 0.77, so entering that second stage with

knowledge that the message was encoded by one of the

presented keys would statistically ensure that a single match is

found.

Fig. 6. Future improvement: a second stage device

5. CONCLUSION

By pipelining the DES decrypter and running six of them in

parallel, we were able to speed-up our device by a factor of

108 (as compared to a device with a single non-pipelined

version of the decrypter). This enabled us to run through our

subset of keys in a reasonable amount of time. Since the entire

56-bit DES key space contains 330 times more entries than

what we have tested, a full brute force attack would either

require a few years of processing, or many FPGAs in parallel.

 In any case, the speedup observed in the hardware

implementation of DES is significant enough to rule out any

software equivalent to perform these kinds of tasks. As the

power of FPGAs increase, so do the strength of ciphers and

the length of keys used. The DES has now been replaced by

the Triple DES (Triple Data Encryption Algorithm-TDEA)

which uses the same hardware as DES, but encrypts a block of

data three times with three different keys. A brute force on a

168-bit key is theoretically impossible, and even with modern

FPGAs it would take more than the age of the universe to

perform a full brute force search. A better approach to

decryption could be to use a more sophisticated attack like

differential analysis, which could reduce the complexity of the

task by a very large factor, or simply hack into the sender‟s

computer network and access data directly from the source.

REFERENCES

[1] Data Encryption Standard, U.S. DEPARTMENT OF COMMERCE/

National Institute of Standards and Technology, FIPS PUB 46-3, Oct.

1999.

[2] H. Yang. (2007). Cryptography Tutorials - Herong's Tutorial Notes

[Online]. Available: http://www.herongyang.com/crypto/des_implTest
.htm

[3] E. Biham and A. Shamir, “Differential Cryptanalysis of DES-like

Cryptosystems,” Dept. Applied Mathematics, The Weizmann Institute
of Science, Jul. 1990.

[4] COPACOBANA: A Codebreaker for DES and other Ciphers,

COPOCOBANA [Online]. Available: http://www.copacobana.org
[5] Birthday Problem, Wikipedia online [Online]. Available: http://

en.wikipedia.org/wiki/birthday_paradox

