
1 

Pipelined Data Encryption Standard (DES)  

Brute Force Attack Unit 

S. Foucher, S. Sadhukha and Y. Ton-That 

Department of Electrical and Computer Engineering, McGill University, Montreal, Canada 

{simon.foucher, shajib.sadhukha, yvan.tonthat}@mail.mcgill.ca 

 
Abstract—Brute force cryptic attacks is the only 

cryptographic approach which guarantees a positive result, 

provided enough resources are available. Since DES uses block 

cipher encryption instead of arithmetic algorithms, modern 

developments in high performance FPGAs have made it a 

feasible target for brute force attacks because of its short 56 bit 

key. We developed a system capable of running such an attack 

on a chosen subset of keys within a reasonable amount of time. 

By pipelining the 18 DES decryption stages, we implemented 6 

decryption unit working in parallel on a single Cyclone II FPGA 

board capable of running 0.84 billion keys per second at 

130MHz. By matching the outputted decrypted block of 64 bits 

with prior knowledge of the original data encrypted, we were 

able to generate a positive key match in 9.7 days on average. 

Even though this might seem a bit slow, we also designed a 

software equivalent of our device which would require thousands 

of years to perform the same task, due to the linear arithmetic 

based processing of regular PC architecture.   [Word count = 3244] 

 

 

1. INTRODUCTION 

 

HE Data Encryption Standard (DES) was released in 1974 

by IBM to serve as a secure cryptographic standard to 

protect confidentiality of ATM communications. Its ease of 

implementation in hardware, thought to be one of DES‟s 

greatest strength ended up being one of its most significant 

vulnerability by means of hardware driven brute force cryptic 

attacks [3]. Unlike arithmetic algorithms, the block ciphers 

that perform DES encryption can easily be implemented on 

FPGAs. By pipelining the 18 stages of encryption we have 

developed a design that can run at 140MHz top speed on an 

Altera Cyclone II FPGA board. To enhance the feasibility of 

our design, we have restrained ourselves to a subset of the 56 

bit key space containing only alpha numeric ASCII 

characters, which reduced the scanning task by a factor of 

21,500. The motivation for that choice of subset space is an 

attempt to exploit human laziness in key selection for 

encryption. At each key iteration, the 64 bit cipher text 

provided is decrypted and the resulting data is matched with 

expected value of the plaintext using a lookup table. Our 

compact architecture enabled us to fit six such devices into a 

single FPGA, which are capable of processing 0.84 billion 

keys per second and perform a full attack in three days. Even 

though this might seem a bit slow, by developing and testing a 

C# implementation of DES encryption, we found that a 

software equivalent would require 20,770 years to perform the 

same task 

 

 

2. ATTACK UNIT COMPONENTS 

 

To decrypt a 64-bit block of data using the DES algorithm, we 

used the following basic building blocks: an Inverse Key 

Scheduling unit, a Decrypter System, a Decryption Unit, a 

Key Generator unit, and a Look-Up Table (LUT). We were 

also able to easily design an encryption system by building a 

regular Key Scheduling unit, which when integrated in the 

Decryption unit, transforms it into an Encryption Unit 

(Because of that symmetry in encryption/decryption, the terms 

„Encryption Unit‟ and „Decryption Units‟ might be 

interchanged in this paper, but refer to the same circuit block. 

The only difference between and Encrypter and a Decrypter is 

the Key Scheduler which provides the sub keys used. The 

regular key scheduler is used when encrypting, and the 

reverse key scheduler when decrypting). 

 

2.1. Key Scheduler 

 

Figure 1 presents the structure of the key scheduler, which 

accepts a 56-bit key input and through a series of 

permutations, shifts and re-combinations outputs sixteen 48-

bit keys that are to be used to encrypt the message data.  

The original key is actually 64 bits in size, but 8 of those 

bits are parity bits which are only of significance during the 

transmission of the key. The key scheduler outputs 16 sub-

keys K1 to K16. Those sub-keys are defined as: 

 

 𝐾𝑛 = 𝐹𝑆 𝑛, 𝐾𝐸𝑌  (1) 

 

where KS represents a function which takes an integer in the 

range from 1 to 16 and a KEY as inputs, and outputs a sub-

key Kn. [1] 
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Fig. 1. Structure of the key scheduler 

 
The 56 bits of the original key are fed to the key 

scheduler‟s first permutation unit (Permuted_Choice1.vhd), 

which selects specific bits from the 56 bits of the input key 

and re-arranges them into two output streams (C0 and D0) of 

28 bit length each. Each output stream is then left-shifted 

either 1 or two places respectively (depending on the stage) by 

the “shift by 1” component (ShiftLeftBy1.vhd) or the “shift by 

2” component (ShiftLeftBy2.vhd). The shifted outputs are 

then recombined through the second key permutation unit 

(Permuted_Choice2.vhd), the output of which is the stage 1 

sub-key. The process of left-shifting (by one or two places as 

appropriate) and recombining is then repeated 15 times for a 

total of 16 key stages. 

 

2.2. Encrypter System 

 

Once the key scheduling has been performed, the next step is 

to prepare the original data block for the actual encryption. 

This is done by passing the data block through a permutation 

called the Initial Permutation. This permutation also has an 

inverse, called the Final Permutation, and it is used in the final 

stage. 

Once the original data block preparation has been 

completed, the actual encryption is performed by the main 

DES algorithm through intricate key-dependent computations. 

The 64-bit block of input data is first split into two halves. 

The core algorithm of the encrypter, performed by the 

encryption units, is then applied to those halves 16 times, 

making up the 16 rounds of standard DES. The high-level 

view of the encrypter is shown on the right in Figure 2.  

The final consideration with the encrypter was to ensure 

that the sub-keys are applied to the middle stages in order, 

from K1 and K16. 

 
2.3. Encryption Unit 

 

Figure 3 illustrates the structure of the encryption unit used in 

the middle pipeline stages of the encrypter. The purpose of 

that unit is to perform key-dependent computations via the 

Feistel function f(R, K). 

Once the input data is split into two halves of 32 bits, 

denoted as L and R, the Feistel function operates on R. Its 

structure consists of four stages: 

 

1) Expansion – the 32-bit half-block is expanded to 48 bits 

using the expansion permutation. The extra bits are 

provided by duplicating some of the bits. 

2) Key mixing – the result from the expansion stage is 

combined with a sub-key using an XOR operation. 

3) Substitution – after mixing in the sub-key, the block is 

divided into eight 6-bit pieces before processing by the 

substitution box. The substitution box then replaces each 

of its six input bits with four output bits according to a 

non-linear transformation, provided in the form of a 

lookup table. The substitution box provides the core of 

the security of DES. Without the substitution box, the 

cipher would be linear and trivially breakable [3].  

4) Permutation – finally, the 32 output bits from the 

substitution stage are rearranged according to a fixed 

permutation. 

 

The Feistel function is always applied to R and the result is 

then combined with L using an XOR operation. The result is 

finally stored as the next stage‟s R. The next stage‟s L is 

simply the previous stage‟s R. Those operations can be 

defined as follows: 

 

 𝐿′ = 𝑅 (2) 

 𝑅′ = 𝐿 𝑥𝑜𝑟 𝑓(𝑅, 𝐾) (3) 

 

This process is repeated 16 times, making up the 16 rounds 

of standard DES. Finally, in the final stage the order of the 

blocks is switched before they are recombined through the 

final permutation. 

 

2.4. Inverse Key Scheduler 

 

Figure 4 illustrates the structure of the inverse key scheduler. 

It is nearly identical to the original key scheduler in every 

regard, the sole difference being the order in which the sub 

keys are generated [1]. In the original key scheduler, the sub-

keys were generated through a combination of left shifts and 

permutations. In the inverse key scheduler, since the last sub-

key K16 is actually needed first, it must be generated first. 

Thus, the total number of left shifts applied to each half of the 

. 
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Fig. 2. Structure of the encrypter 
        

input key (C0 and D0) from all sub-stages were added up to 

determine the shift number necessary to produce K16. So at 

the first stage of the inverse key scheduler, C0 and D0 must 

both be shifted 28 times to the left (actually since C0 and D0 

are both 28 bits long this amounts to doing nothing). For each 

subsequent stage, instead of performing a large amount of left 

shifts, the number by which to shift left is subtracted from 28 

to obtain the equivalent number of right shift.  As an example, 

the second stage of the Inverse Key Scheduler needs the input 

key left shifted by 28: 

 

  28Data  Size − 26Left  Shift  =  2Equivalent  Right  Shift  (4) 

 

For all other aspects of the Inverse Key Scheduler, please 

refer the section for the original Key Scheduler. 
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Fig. 3. Internal structure of the encryption unit 

 

2.5. Decrypter System 

 

The same algorithm is used for encryption and decryption. As 

such, to build the decrypter we simply use the structure of the 

encrypter as illustrated in Figure 2. The sole different is that 

the sub-keys are applied in reverse order, from K16 to K1. The 

structure of the decrypter is presented in Figure 5. [1] 

 

2.6. Key Generator Unit 

 

Note: in the following section, we will use the word „digit‟ to 

represent a 7 bit alphanumeric ASCII character.  

The key generator unit takes care of generating the keys 

which are used to conduct the attack. Since the entire 2
56

 key 

space was an unfeasible task for our project, we restrained 

ourselves to a subset of keys containing only ASCII 

alphanumeric. The unit acts like an 8 digit modulo 62 counter, 

which outputs letters a-z, then A-Z, then numbers 0-9 in 7-bit 

ASCII format (8 ASCII characters at 7 bits each gives us the 

required 56 bit key). Instead of having six key generators (one 

for every decrypter), we used a single component which 

outputs six distinct keys per clock cycle. The primary 

motivations for this architectural choice were first, a reduction 

in hardware space by eliminating redundancies and secondly, 

a centralize unit with ease of future modification to                  

. 
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Fig. 4. Structure of the inverse key scheduler 

 
accommodate more decrypter units if implemented in larger 

boards. The chosen architecture exploits the redundancies in 

having six key generators by splitting the counter into two 

parts: the 7 least significant digits of the key (the common 

key) and the single most significant digit of the key (the 

specific key). While the common key is the same for every six 

keys outputted on the rising edge of the clock, the specific 

byte is different for every key generated. For example, key1 

will have a specific key ranging from „a‟ to „k‟, key2‟s 

specific key will range from „l‟ to „v‟, etc… The common key 

ranges from „aaaaaaa‟ to „9999999‟ and gets incremented at 

every clock pulse. By appending every individual specific key 

with the common key, we can generate 6 distinct keys at 

every clock pulse. Following this example, key1 will start at 

„aaaaaaaa‟, while key2 is at „laaaaaaa‟, all the way to key6 

which starts at „0aaaaaaa‟. At the next clock pulse, key1 will 

be aaaaaaab‟, key2 will be „laaaaaab‟, etc… The scan will be 

complete when key1 reaches „k9999999‟, key2 reaches 

„v9999999‟, key6 reaches „99999999‟, etc… (Note that only 

alphanumeric characters are scanned, so there is a jump from 

„z‟ to „A‟, from „Z‟ to „0‟, and a resetting jump from „9‟ back 

to the starting point „a‟) 
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Fig. 5. Structure of the decrypter system 

 
With minimal modifications, this design could easily 

accommodate up to 62 keys/clock cycle by simply splitting 

the load of the six current specific keys. At 62 keys/clock, 

every specific key would be hard wired to a single 

alphanumeric character (a-z, A-Z and 0-9). We could also 

easily modify the key generator to make it scan all the 56-bit 

key space in order to perform a full brute force attack. 

It is also worth a mention that the system‟s critical path 

resides within one of these transitions, which would be very 

difficult to pipeline. 

 

2.7. Lookup Table 

 

The basic principle of a brute force attack is to try and decrypt 

a message with every possible key combination, thereby 

ensuring a positive result. Once the encrypted data has been 

decrypted with a given key, a secondary component validates 

this data to look for coherence. One could use character 

frequency analysis matched with the sender's language, a 

dictionary lookup component, or any previous knowledge of 

the encrypted message. (For example, during WWII, the allies 

would match the final characters of encoded messages with 

"Hail Furor").  

For our purpose, we implemented a lookup component 

which matches the deciphered data with a user inputted 64-bit 
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vector. After each attempt to decrypt, this component will 

compare the output of all 6 decrypters with the user supplied 

64-bit vector of expected data and send out a flag signal 

whenever a match is found, as well as the key used to 

generate the match. 

 

2.8. Decrypter Nest 

 

The Decrypter Nest is a central management unit controlling 

several decrypters (six in our case, because of hardware 

mapping restriction), all working in parallel on a subset of 

keys provided by the key generator. The decrypter nest 

receives the first block of 64-bit encrypted message data to be 

decrypted (either via I/O or hard wired into the VHLD code). 

It transmits this vector to every decrypter unit which all 

performs a DES decryption using keys provided by the key 

generator. After the process and lookup check, the decrypters 

send their results back to the Nest (match and the used key in 

that case). The match lines are ORed from the decrypters into 

the nest‟s output port, and the output key used are multiplexed 

(As discussed in the analysis section of this report, it was 

statistically unnecessary to make provision in the advent of 

having two units finding a match simultaneously).  The Nest 

has three informative output ports: “PotentialKeyFound” 

which gets asserted when a match is found; “PotentialKey” 

which outputs the potential key used to generate the previous 

flag; and “Finished”, which indicates that the key generator 

has exhausted all its list of keys. 

 

 

3. PIPELINING 

 

In order to speed-up our brute force search, the decrypter has 

been pipelined into 18 stages such that it can process one key 

per clock pulse. Since pipelining only increases the 

throughput of the system when processing a stream of data, it 

doesn‟t make sense to pipeline the encrypter. However, 

because we are using the exact same structure for both 

encryption and decryption, we decided to pipeline our 

encrypter and then use its code to implement the decrypter 

used in the nest to perform the attack. 

Registers were inserted in-between each pipeline stage and 

clocked synchronously. The time between each clock signal 

was set to be greater than the longest delay between all stages 

such that when the registers are clocked, the data that is 

written to them is the final result of the previous stage. (To 

our surprise, the critical path actually happened to reside 

within the key generator, which cannot be pipelined). The 

logic within the stages is, therefore, purely asynchronous. 

The key scheduler was also designed using a pipelined 

configuration. A register was placed immediately after every 

shift unit, making up for the 17 pipeline stages of the key 

scheduler. We also had to ensure that the key scheduler and 

encrypter (or the inverse key scheduler and decrypter) were 

properly synchronized such that a sub-key is immediately 

available at each decryption stage. 

 

 

 

 

4. DISCUSSION 

 

4.1. Hardware Implementation 

 

The development of our components was made and debugged 

using Model Sim SE V5.8 and the „Place and Route‟ analysis, 

the .sof file generation as well as hardware implementation 

was done using Altera Quartus II V8.0. Our design was 

successfully implemented on a Cyclone II (EP2C35F672C6) 

FPGA board. Even though our design is capable of running at 

a maximum clock speed of 130MHz (140MHz without the 

LED display), the target hardware chosen only provides us 

with a 50MHz clock, thereby degrading our performance by a 

factor of three.  

In order to minimize hardware overhead, the outputted key 

was transmitted to a basic decoder which translated it to LED 

signals sent to the board‟s eight segments LED display. Since 

it was impossible to distinguish between capital and small 

letters with the basic eight segments (for example O, o and 0), 

a single mono sized alphabet was coded using a lookup table, 

and bit 6 of every ASCII character (1=small letter, 0 = capital) 

was inverted and sent out to a LED light corresponding to a 

LED segment decoder. (Therefore, when reading the key, a lit 

up light would indicate that that character was a capital letter) 

Since every individual decryption units took up 15% of the 

target hardware‟s resources, we decided to implement 6 of 

them in the nest, which would total 90% of resources, 

allowing 10% for overhead. Because of great compiler 

technology and redundancies in our design, the full unit 

(including the entire user interface overhead) took only 80% 

of available logic elements (23,725 Combinational Functions 

and 7,840 dedicated logic registers). Since at this level of 

occupancy, the Trace and Route complexity starts to increase 

exponentially, we were not able to fit a 7
th
 decrypter into the 

nest.  

 

4.2. Performance 

 

Since the Cyclone II board only provided us with a 50MHz 

clock, our design was forced to run slower than its maximum 

potential. At this speed, our system can run the entire chosen 

subset key space on average in 25 days (50 days worst case).  

At maximum clock frequency, this time is reduced to 8.9 

days. Even if this might seem a little slow, it is worth 

mentioning that we are able to process 0.84 billion 

keys/second, so we could recycle our machine to encrypt data 

at a rate of 53.7MB/second. We also developed a C# software 

version of our device, and a comparison in performance is 

presented in the following table (note that the C# code was 

not optimized for performance): 

 

TABLE 1 

Speedup gained by Hardware versus Software 

 Dual Core 1.7 GHz PC 140 MHz FPGA 

Keys/Sec 333 840,000 

Ave. Time/Key 3.00 mS 1.19 nS 

Ave. time/Attack  7,581,255 Days 

(or 20,770 Years)  

8.9 Days 
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The most widely known commercial alternative for DES 

brute force attacks is the Copacabana machine (abbreviation 

of cost-optimized parallel code breaker). This device is 

available for about $10,000 and, with a cluster of 120 FPGA 

cores, is capable of running an exhaustive 56-bit search in a 

matter of weeks. [4] 

 

4.3. Future improvements 

 

The possibility of more than one decrypter in the nest finding 

a key match at the same time did not escape to us. Based on 

the Birthday Paradox, the number of inputs to a Hashing 

function required to generate a hash collision is given by 

2
(output bits/2)

 [5]. Using this as an upper bound (the DES is a 

Hash table optimized to avoid differential analysis, so that 

these collisions are minimized) we can estimate that the 

biggest number of keys which will generate the same output is 

2
32

, which on a key space of 2
56

 gives the probability of a 

collision p = 5.96*10
-8

. Using a binomial expansion, we can 

conclude that having two collisions when running six 

decrypters has a probability of (6C2)*p
2
*(1-p)

4
 = 5.32810

-14
. 

Based on this extremely low probability, which is an upper 

bound, no provisions were made to account for that 

possibility.  

This also tells us that the upper bound expected number of 

potential keys found can be given by E(x) = n*p, where n = 

62
8
 (the number of keys we are exploring), which is just about 

13 million. (Note once again that this is an upper bound for 

linear hash functions and that DES is a non linear system 

optimized to reduce this number). At the present moment, our 

system is incapable of dealing with such a large number of 

keys. A good improvement would be to feed those keys to a 

second stage decrypter which could then use either more 

knowledge on the encrypted text, or run various data 

coherency tests (i.e. dictionary lookups, ASCII lookups, etc.). 

This improvement is presented in Figure 6. The expected 

number of potential keys found on that second level of 

decrypter would be 0.77, so entering that second stage with 

knowledge that the message was encoded by one of the 

presented keys would statistically ensure that a single match is 

found. 

 

 

Fig. 6. Future improvement: a second stage device 

 

5. CONCLUSION 

 

By pipelining the DES decrypter and running six of them in 

parallel, we were able to speed-up our device by a factor of 

108 (as compared to a device with a single non-pipelined 

version of the decrypter). This enabled us to run through our 

subset of keys in a reasonable amount of time. Since the entire 

56-bit DES key space contains 330 times more entries than 

what we have tested, a full brute force attack would either 

require a few years of processing, or many FPGAs in parallel. 

     In any case, the speedup observed in the hardware 

implementation of DES is significant enough to rule out any 

software equivalent to perform these kinds of tasks. As the 

power of FPGAs increase, so do the strength of ciphers and 

the length of keys used. The DES has now been replaced by 

the Triple DES (Triple Data Encryption Algorithm-TDEA) 

which uses the same hardware as DES, but encrypts a block of 

data three times with three different keys. A brute force on a 

168-bit key is theoretically impossible, and even with modern 

FPGAs it would take more than the age of the universe to 

perform a full brute force search. A better approach to 

decryption could be to use a more sophisticated attack like 

differential analysis, which could reduce the complexity of the 

task by a very large factor, or simply hack into the sender‟s 

computer network and access data directly from the source.  
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