Occupational Health and Safety

Wayne Wood **Environmental Health** and Safety Office and **Department** of **Occupational Health** McGill University 398-4563 Wayne.wood@mcgill.ca www.mcgill.ca/ehs http://www.mcgill.ca/occh/

Occupational health and safety includes:

- Occupational Health:
 - Medical
 management of
 worker health

- Occupational Hygiene:
 - Recognition, evaluation and control of hazardous materials and agents

www.crboh.ca/

- Occupational Safety:
 - Prevention of unintentional injuries and losses

Occupational Health and Safety

Part 1: Hazard Recognition the hazard kingdom Part 2 Hazard Evaluation energy thresholds risk assessment Part 3 Hazard Control legislation the controls hierarchy examples

Part 1 - Hazard Recognition

Workplace Hazardous Materials Information System (WHMIS)

• A uniform, pan-Canadian system designed to provide workers information on certain classes of hazardous materials, mostly chemicals, referred to as "Controlled Products".

What are Controlled Products?

.....Documents and Settings/waynew/Desktop/EH&S PHOTOS CLIPART and MPEGS/Humour/Whenworkersgetbored.mpeg1.mpeg

Class A: Compressed Gas

The One That Got Away

..\..\Documents and Settings\waynew\Desktop \EH&S PHOTOS CLIPART and MPEGS\Humour\Whenworkersgetbored.mpeg1.mpeg

What are Controlled Products?

Class B: Flammable and Combustible Material

Controlled Products

Class C: Oxidizing Material

CIO.

DANGER!

CONTACT WITH OTHER MATERIAL MAY CAUSE FIRE OR EXPLOSION, ESPECIALLY WHEN HEATED CAUSES SEVERE BURNS Keep from contact with clothing and other

combustible materials. Do not store neir combustible materials. Store in tightly closed container. Keep away from heat, Do not get in eyes, on skin, on clothing. Avoid breathing vapor or mist. Use with adequate ventilation. Wash thoroughly after handling. In case of fire, flood with water. In case of spill, flood with water applied quickly to entire area. Neutralize washings with lime or soda ash. FIRST AID: In case of contact, immediately flush eyes or skin with plenty of water for at least 15 minutes while removing contaminated clothing and shoes. Call a physisim. Wash techting before re-use.

4024308

9652 Perchloric Acid, 70-72%

'Baker Analyzed' *REAGENT*

FW 100.5

LOT	MEETS A.C.S. SPECIFICATIO	NS.
Assay (HCIO,) Color (APHA) Specific Gravity at 25°, 25° C. Residue after Ignition Chloride (CI) Nitrogen Compounds (as N)	70.0 · 72.0 % 10 max. 1.67 · 1.7 0.003 % m 0.001 % m 0.001 % m	NUX.
Sulfate (SO_)	0.001 % m	NIX.
Trace Impurities (in ppm): Silicate and Phosphate (as SiO ₂) Heavy Metals (as Pb) Iron (Fe)	5 m	iax. iex.

.T.Baker

J. T. BAKER CHEMICAL CO., PHILLIPSBURG, N. J. 08865

Class D Controlled Products

Division 1: Materials Causing Immediate and Serious Toxic Effects

Division 2: Materials Causing Other Toxic Effects

Division 3: Biohazardous Infectious Materials

Biohazards

- Bacteria
- Fungi
- Viruses
- Parasites
- Recombinant DNA?

Biohazards assume many forms:

Controlled Products

Class E: Corrosive Material

Class F: Dangerously Reactive Material

Not Classified as Controlled Products:

Not Classified as Controlled Products:

Oven clean

- Domestic goods
- Cosmetics
- •Food & food additives
- Drugs & diagnostic chemicals
- Pesticides
- Hazardous waste

Physical Agents

- Thermal (heat/cold) stress
- Radiation
 - Ionizing
 - alpha, beta, gamma, x rays
 - Non -ionizing
 - UV, IR, radio and microwave, electric and magnetic fields
- Noise and Vibration
- Hypo and hyperbaric environments

Electricity

Mechanical Hazards

Falls from heights

Machine hazards

Ergonomics Related maladies

Part 2- Evaluation of Occupational Hazards

Evaluation of Occupational Hazards

- Energy Thresholds
- Risk Assessment
 - risk equations
 - risk matrix

"Incident" - contact with an energy source above the threshold of the worker.

Examples of Thresholds

- Chemical "TLV's"
- Radiation dose
- Thermal stress
- Noise
- Voltage/current
- Ergonomics (# of repetitions)
- Falls (50% from >9 ft. are fatal)

Hazardous Substances: risk considerations

- Physical state (sol, liq, gas, aerosol)
- Physical properties (BP, VP, ...), radionuclear properties.
- Chemical properties i.e., flammability, solubility, reactivity, corrosivity, odour warning ...
- Toxicity (LD50, LC50...)
- Biological properties (species, viability, pathogenicity)
- Toxic effects (carcinogenic, neurotoxic...)
- Amount, duration, frequency timing of exposure

- Amount, duration, frequency timing of exposure
- Route(s) of entry (inhalation, skin absorption, injection, ingestion)
- Interactions (synergestic, antagonistic effects)
- Individual susceptibility (allergies, sensitizations, pregnancy...)
- Handling methods "There are no harmless substances...
 ...only harmless ways substances" – E

Routes of Entry

"All chemicals are poisons; there is none which is not a poison. The right dose differentiates a poison and a remedy." - Paracelsus (1493-1541)

The dose-response curve

TLV Definition

Threshold limit values refer to airborne concentrations of substances and represents conditions under which it is believed that nearly all workers may be repeatedly exposed without adverse effects

- •wide variation in individual responses to exposures
- •small percentage of workers may experience adverse reactions even at concentrations at or below the threshold limit

"It's not only the dose; it's also the timing"

- Sandra Steingraber, Rachel Carson scholar

Measurements of Safety

- Recordable injuries, lost time, worker's compensation costs.
- Incidents
- Compliance record
- Occupational hygiene surveys
- Inspections

- Complaints
- Benchmarking
- Auditing
- Behavior
- Worker satisfaction
- \$\$\$

OCCUPATIONAL UNINTENTIONAL-INJURY DEATHS AND DEATH RATES BY INDUSTRY, UNITED STATES, 2003

Source: National Safety Council Accident Facts, 2004 edition

OR-THE-JOE

OFF-THE-JOB NOTOR-VEHICLE

OFF-THE-JOS PUBLIC

OFF-THE-JOB HOME

INJURIES

WORKERS' ON- AND OFF-THE-JOB INJURIES, 2003

Major Areas of Loss

- Harm to employees
- Property loss
- Harm to public
- Production Loss
- Loss of revenues
- liabilities
- Security losses
- Damage to reputation

Sales Required to Cover Losses

Costs of Losses	1% Profit Margin	3% Profit Margin	5% Profit Margin				
\$1000	100,000	33,000	20,000				
5000	500,000	167,000	100,000				
10,000	1,000,000	333,000	200,000				
50000	5,000,000	1,667,000	1,000,000				
100,000	10,000,000	3,333,000	2,000,000				
	In times of and wani may con organizat	In times of keen competition, low profit margins and waning budgets, controlling losses may contribute more to profits than the organization's best salesperson.					

Assessing Risk

Traditional risk equations:

Risk = Likelihood x Exposure x Consequences

Or

Risk Matrix

\downarrow CONSEQUENCES	LIKELIHOOD \rightarrow					
How Seriously Can	How Likely is it to Hurt Someone?					
it Hurt Someone?	VERY LIKELY	LIKELY	OCCASIONAL	UNLIKELY	VERY UNLIKELY	
EXTREME	HIGH	нісн	HIGH	MEDIUM	MEDIUM	
MAJOR	нісн	HIGH	MEDIUM	MEDIUM	LOW	
MODERATE	HIGH	MEDIUM	MEDIUM	LOW	NEGLIGIBLE	
MINOR	MED IUM	MEDIUM	LOW	NEGLIGIBLE	NEGLIGIBLE	

Risk management options

- Terminate
- Tolerate
- Transfer
- Treat

Part 3- Control of Occupational Hazards

DO NOT STARE DIRECTLY INTO LASER BEAM WITH REMAINING EYE

The Hierarchy of Controls

Engineering

Engineering Controls

- Process/hazard isolation or containment
- Machine safeguarding
- Ventilation
- Facility design
- Equipment design e.g. safety interlocks
- Automation

Designing Safety Features

Shape

Control-Display Relationships

Follow usual expectations.

Machine Safeguarding

http://www.osha-slc.gov/Publications/Mach_SafeGuard/

Machine Safeguarding

- 1. No guard on saw blade
- 2. Debris on table surface
- 3. No push stick
- 4. Loose clothing
- 5. No safety shoes or glasses
- 6. Tripping hazards

Administrative Controls

- Substitution
- Work scheduling
- Purchasing standards
- Training, supervision
- Inspections & audits
- Occupational health and hygiene programs
- Incident reporting and investigation
- Emergency and disaster planning
- Safety management systems e.g. OHSAS 18001

Personal and Procedural Controls

- Eye protection
- Skin protection
- Foot protection
- Respirators
- Safe work policies and procedures e.g. Lockout/Tagouts, confined space entry procedures

Legislation

- Due Diligence
- Types of Law
- Rights, Obligations and General Duties

Introducing...

Knowledge of legislation is important, but there's more to OH&S than that. **Exercise** critical thinking - be a McGill engineer, not just another **Checklist Charlie!**

Checklist Charlie

Jurisdictions

Provincial

QUEBEC

Key Federal H&S Legislation

- Canada Labour Code
- Canadian Nuclear Safety
 Act
- Transport of Dangerous Goods Act
- Hazardous Products Act
- Pest Control Products Act

Bill C-45 → Canada Criminal Code

Municipal H&S Legislation

- Fire prevention
- Building permits and zoning
- Some ventilation and building codes
- Water and air emissions

Provincial Legislation

- Act and regulations respecting occupational health and safety
- Regulation respecting industrial accidents and occupational diseases (aka worker's compensation regs)
- Public building safety act
- Construction safety code

http://www.ccohs.ca/legislation/

Workers' Rights¹

- Safe and healthful conditions
- Supervision, training, and info on safety
- Right to refuse dangerous
 work
- Right to a safety rep
 - Protective reassignment

¹Quebec Act respecting occupational health and safety

Workers' Obligations

- Be familiar with
 "prevention program" i.e.,
 safety policies and
 procedures
- Take measures to protect self and others
- Participate in the ID of risks
- Cooperate with H&S committee

Employers' Obligations 🕼 🕼 and General Duty Clauses

- Facility design, layout, maintenance, sanitation, environmental conditions
- Work organization,
 procedures, and
 techniques
- Methods to identify,
 control, and eliminate
 risks

- Fire protection
- Control of dangerous
 substances used or
 emitted
- Train, supervise and
 advise workers about risks
 and prevention measures.
- Provide safety devices and And more...

Some typical contents of H&S regulations:

- Confined space entry
- Exposure limits (chemicals, radiation, noise, thermal stress, vibration, etc.)
- Ventilation requirements
- Comfort (T,H) criteria
- Lighting
- Fall protection
 - scaffolds
 - ladders
 - guardrails,
 - fall arrest, fall restraint

• Ergonomics

- Machine guarding specs
- Lock-out/Tag-out procedures
- Protective equipment specs
- Storage and handling specs

Ergonomics – the risk factors

• Force

• Repetitiveness

• Posture

• Duration

Basic precautions and solutions

The ideal ergonomic keyboard!

- Neutral position
- Minimize reaching, bending, twisting

- Adjustability, adjustability, adjustability
- Lighting, glare control
- Health and fitness
- Medical intervention for chronic symptoms

Arm Abduction with a conventional keyboard/mouse tray

Fire Protection

Class A Fires (combustibles) ≻ wood ≻ paper ≻ cloth

Class B Fires (liquid fuels) ≻solvents ≻oil ≻gasoline

Class C (electrical equipment) > motors > transformers > relay and fuse boxes > appliances

Class D

(combustible metals)

- ➤ sodium
- ➢ potassium
- > phosphorus
- ➤ magnesium

Extinguishing agents

- Water (A)
- Carbon dioxide (B,C)
- (Multipurpose) dry chemical (A,B,C)
- Halogenated compounds (B,C)
- Dry chemical for combustible metals (D)
- Foam (varies by formulation)

Fire Facts.

- Fires occur in gaseous phase
- Flammable materials burn at room T
- Combustibles burn if heated
- Fire intensity proportional to fuel surface area
- Smoke and gas kill (>75 % of fatalities)
- Flash point = best indicator of fire potential

Definition: Flash Point

• The flash point is the lowest temperature at which a liquid produces enough vapour to ignite in the presence of a source of ignition.

• The lower the flash point, the greater the risk of fire.

acetone-18ether (diethyl)-45natural gas- 88ethyl alcohol13

- methyl alcohol 11
- gasoline -43
- varsol 40

Explosives

- Explosive atmospheres
- Explosive compounds

Gases, vapours AND combustible solids (as aerosols) can present explosive atmospheres.

- Carbon
- Fertilizers
- Grain and other foods
- Metal powders
- Resin, wax, soap
- Drugs
- Insecticides
- Wood, paper

Stages of a Fire

- Incipient release of combustion particles
- Smoldering smoke, but no flame and little heat
- Flame visible flame, less smoke
- Heat stage fire heats surroundings, spreads rapidly

Fire Protection Engineering Considerations

- Usage i.e., residential, industrial, commercial, institutional, etc.
- Size of facilities, age of building, materials of construction
- Location, occupancy
- Activities, fuel content

Engineering Features

- Detection systems
- Fire alarms
- Suppression systems
- Water supply, booster pumps, headers, standpipes, sprinklers
- Building system controls
- Fire separation, ratings, compartmentalization
- Egress (exit) routes, hardware
- Signage

Certification and Maintenance

Source for Fire Protection Codes:

National Fire Protection Association

