19.D4 We want to compute the maximum temperature change allowable without thermal shock for these several ceramic materials, which temperature change is a function of the fracture strength, elastic modulus, and linear coefficient of thermal expansion. These data and the ΔT_f 's are tabulated below. (Values for E, σ_f , and α_l are taken from Tables B.2, B.4, B.6 in Appendix B.)

Material	σ_f (MPa)	E (MPa)	$\alpha_l (^{\circ}C)^{-1}$	$\Delta T_f(^{\circ}\mathrm{C})$
Soda-lime glass	69	69 x 10 ³	9.0 x 10 ⁻⁶	111
Borosilicate glass	69	$70 \ge 10^3$	3.3 x 10 ⁻⁶	300
Aluminum oxide (96%)	358	303×10^3	7.4 x 10 ⁻⁶	160
Gallium arsenide	57	85 x 10 ³	5.9 x 10 ⁻⁶	114