DESIGN PROBLEMS

Thermal Expansion

19.D1 For these railroad tracks, each end is allowed to expand one-half of the joint space distance, or the track may expand a total of this distance (5.4 mm). Equation 19.3 a is used to solve for T_{f}, where the value α_{l} for the 1025 steel [12.0 $\times 10^{-6}\left({ }^{\circ} \mathrm{C}\right)^{-1}$] is found in Table 19.1. Thus, solving for T_{f} from Equation 19.3a leads to

$$
\begin{gathered}
T_{f}=\frac{\Delta l}{\alpha_{l} l_{0}}+T_{0} \\
=\frac{5.4 \times 10^{-3} \mathrm{~m}}{\left[12.0 \times 10^{-6}\left({ }^{\circ} \mathrm{C}\right)^{-1}\right](11.9 \mathrm{~m})}+4^{\circ} \mathrm{C} \\
=37.8^{\circ} \mathrm{C}+4^{\circ} \mathrm{C}=41.8^{\circ} \mathrm{C}\left(107.3^{\circ} \mathrm{F}\right)
\end{gathered}
$$

