which, when substituted into the preceding equation leads to

$$
\frac{\Delta d_{2}}{d_{0}}=-\frac{v E \alpha_{l}\left(T_{0}-T_{f}\right)}{E}=-v \alpha_{l}\left(T_{0}-T_{f}\right)
$$

And, solving for Δd_{2} from this expression

$$
\Delta d_{2}=-d_{0} v \alpha_{l}\left(T_{0}-T_{f}\right)
$$

The total Δd is just $\Delta d=\Delta d_{1}+\Delta d_{2}$, and

$$
\Delta d=d_{0} \alpha_{l}\left(T_{f}-T_{0}\right)+d_{0} v \alpha_{l}\left(T_{f}-T_{0}\right)=d_{0} \alpha_{l}\left(T_{f}-T_{0}\right)(1+v)
$$

The values of v and α_{l} for nickel are 0.31 and $13.3 \times 10^{-6}\left({ }^{\circ} \mathrm{C}\right)^{-1}$, respectively (Tables 6.1 and 19.1). Incorporating, into the above equation, these values, as well as those for $\Delta d, d_{0}$, and T_{0} cited in the problem statement gives

$$
-(0.023 \mathrm{~mm})=(12.000 \mathrm{~mm})\left[13.3 \times 10^{-6}\left({ }^{\circ} \mathrm{C}\right)^{-1}\right]\left(T_{f}-70^{\circ} \mathrm{C}\right)(1+0.31)
$$

And, finally, solving the above expression for T_{f} yields $T_{f}=-40^{\circ} \mathrm{C}$.

