19.28 This problem asks for us to determine the change in diameter of a cylindrical brass rod 150.00 mm long and 10.000 mm in diameter when it is heated from $20^{\circ} \mathrm{C}$ to $160^{\circ} \mathrm{C}$ while its ends are maintained rigid. There will be two contributions to the diameter increase of the rod; the first is due to thermal expansion (which will be denoted as Δd_{1}), while the second is from Poisson's lateral expansion as a result of elastic deformation from stresses that are established from the inability of the rod to elongate as it is heated (denoted as Δd_{2}). The magnitude of Δd_{1} may be computed using a modified form of Equation 19.3 as

$$
\Delta d_{1}=d_{0} \alpha_{l}\left(T_{f}-T_{0}\right)
$$

From Table 19.1 the value of α_{l} for brass is $20.0 \times 10^{-6}\left({ }^{\circ} \mathrm{C}\right)^{-1}$. Thus,

$$
\begin{gathered}
\Delta d_{1}=(10.000 \mathrm{~mm})\left[20.0 \times 10^{-6}\left({ }^{\circ} \mathrm{C}\right)^{-1}\right]\left(160^{\circ} \mathrm{C}-20^{\circ} \mathrm{C}\right) \\
=0.0280 \mathrm{~mm}
\end{gathered}
$$

Now, Δd_{2} is related to the transverse strain $\left(\varepsilon_{\chi}\right)$ according to a modified form of Equation 6.2 as

$$
\frac{\Delta d_{2}}{d_{0}}=\varepsilon_{x}
$$

Also, transverse strain and longitudinal strain $\left(\varepsilon_{z}\right)$ are related according to Equation 6.8:

$$
\varepsilon_{x}=-v \varepsilon_{z}
$$

where v is Poisson's ratio. Substitution of this expression for ε_{X} into the first equation above leads to

$$
\frac{\Delta d_{2}}{d_{0}}=-v \varepsilon_{z}
$$

Furthermore, the longitudinal strain is related to the modulus of elasticity through Equation 6.5-i.e.,

$$
\varepsilon_{z}=\frac{\sigma}{E}
$$

And, therefore,

