19.26 (a) We are asked to compute the magnitude of the stress within a brass rod that is heated while its ends are maintained rigid. To do this we employ Equation 19.8, using a value of 97 GPa for the modulus of elasticity of brass (Table 6.1), and a value of $20.0 \times 10^{-6}\left({ }^{\circ} \mathrm{C}\right)^{-1}$ for α_{l} (Table 19.1). Therefore

$$
\begin{gathered}
\sigma=E \alpha_{l}\left(T_{0}-T_{f}\right) \\
=\left(97 \times 10^{3} \mathrm{MPa}\right)\left[20.0 \times 10^{-6}\left({ }^{\circ} \mathrm{C}\right)^{-1}\right]\left(15^{\circ} \mathrm{C}-85^{\circ} \mathrm{C}\right) \\
=-136 \mathrm{MPa}(-20,000 \mathrm{psi})
\end{gathered}
$$

The stress will be compressive since its sign is negative.
(b) The stress will be the same $[-136 \mathrm{MPa}(-20,000 \mathrm{psi})]$, since stress is independent of bar length.
(c) Upon cooling the indicated amount, the stress becomes

$$
\begin{gathered}
\sigma=E \alpha_{l}\left(T_{0}-T_{f}\right) \\
=\left(97 \times 10^{3} \mathrm{MPa}\right)\left[20.0 \times 10^{-6}\left({ }^{\circ} \mathrm{C}\right)^{-1}\right]\left[\left(15^{\circ} \mathrm{C}-\left(-15^{\circ} \mathrm{C}\right)\right]\right. \\
=+58 \mathrm{MPa}(+8400 \mathrm{psi})
\end{gathered}
$$

This stress will be tensile since its sign is positive.

