19.26 (a) We are asked to compute the magnitude of the stress within a brass rod that is heated while its ends are maintained rigid. To do this we employ Equation 19.8, using a value of 97 GPa for the modulus of elasticity of brass (Table 6.1), and a value of 20.0 x 10^{-6} (°C)⁻¹ for α_l (Table 19.1). Therefore

$$\sigma = E\alpha_l (T_0 - T_f)$$

= (97 x 10³ MPa) [20.0 x 10⁻⁶ (°C)⁻¹](15°C - 85°C)
= -136 MPa (-20,000 psi)

The stress will be compressive since its sign is negative.

- (b) The stress will be the same [-136 MPa (-20,000 psi)], since stress is independent of bar length.
- (c) Upon cooling the indicated amount, the stress becomes

$$\sigma = E\alpha_l (T_0 - T_f)$$

= (97 x 10³ MPa) [20.0 x 10⁻⁶ (°C)⁻¹][(15°C - (-15°C)]

= +58 MPa (+8400 psi)

This stress will be tensile since its sign is positive.