19.2 We are asked to determine the temperature to which $10 \mathrm{lb}_{\mathrm{m}}$ of brass initially at $25^{\circ} \mathrm{C}$ would be raised if 65 Btu of heat is supplied. This is accomplished by utilization of a modified form of Equation 19.1 as

$$
\Delta T=\frac{\Delta Q}{m c_{p}}
$$

in which ΔQ is the amount of heat supplied, m is the mass of the specimen, and c_{p} is the specific heat. From Table 19.1, $c_{p}=375 \mathrm{~J} / \mathrm{kg}-\mathrm{K}$ for brass, which in Customary U.S. units is just

$$
c_{p}=(375 \mathrm{~J} / \mathrm{kg}-\mathrm{K})\left(\frac{\left.2.39 \times 10^{-4}{\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}-{ }^{\circ} \mathrm{F}}_{1 \mathrm{~J} / \mathrm{kg}-\mathrm{K}}^{)}\right)=0.090{\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}-{ }^{\circ} \mathrm{F} .}^{\circ} \mathrm{C}}{}\right.
$$

Thus

$$
\Delta T=\frac{65 \mathrm{Btu}}{\left(10 \mathrm{lb}_{\mathrm{m}}\right)\left(0.090 \mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}-{ }^{\circ} \mathrm{F}\right)}=72.2^{\circ} \mathrm{F}
$$

and

$$
T_{f}=T_{0}+\Delta T=77^{\circ} \mathrm{F}+72.2^{\circ} \mathrm{F}=149.2^{\circ} \mathrm{F}\left(65.1^{\circ} \mathrm{C}\right)
$$

