19.14 This problem asks for us to determine the temperature to which a cylindrical rod of tungsten 15.025 mm in diameter must be heated in order for it of just fit into a 15.000 mm diameter circular hole in a plate of 1025 steel (which, of course, is also heated), assuming that the initial temperature is $25^{\circ} \mathrm{C}$. This requires the use of Equation 19.3a, which is applied to the diameters of both the rod and hole. That is

$$
\frac{d_{f}-d_{0}}{d_{0}}=\alpha_{l}\left(T_{f}-T_{0}\right)
$$

Solving this expression for d_{f} yields

$$
d_{f}=d_{0}\left[1+\alpha_{l}\left(T_{f}-T_{0}\right)\right]
$$

Now all we need do is to establish expressions for $d_{f}($ steel $)$ and $d_{f}(\mathrm{~W})$, set them equal to one another, and solve for T_{f} According to Table 19.1, $\alpha_{l}($ steel $)=12.0 \times 10^{-6}\left({ }^{\circ} \mathrm{C}\right)^{-1}$ and $\alpha_{l}(\mathrm{~W})=4.5 \times 10^{-6}\left({ }^{\circ} \mathrm{C}\right)^{-1}$. Thus

$$
\begin{gathered}
d_{f}(\text { steel })=d_{f}(\mathrm{~W}) \\
(15.000 \mathrm{~mm})\left[1+\left\{12.0 \times 10^{-6}\left({ }^{\circ} \mathrm{C}\right)^{-1}\right\}\left(T_{f}-25^{\circ} \mathrm{C}\right)\right] \\
=(15.025 \mathrm{~mm})\left[1+\left\{4.5 \times 10^{-6}\left({ }^{\circ} \mathrm{C}\right)^{-1}\right\}\left(T_{f}-25^{\circ} \mathrm{C}\right)\right]
\end{gathered}
$$

Now solving for T_{f} gives $T_{f}=222.4^{\circ} \mathrm{C}$

