$$
=5.72 \times 10^{22} \mathrm{atoms} / \mathrm{cm}^{3}
$$

Now, from Equation 4.1, the total number of vacancies, N_{v}, is computed as

$$
\begin{gathered}
N_{v}=N_{\mathrm{Au}} \exp \left(-\frac{Q_{v}}{k T}\right) \\
=\left(5.72 \times 10^{22} \mathrm{atoms} / \mathrm{cm}^{3}\right) \exp \left[-\frac{0.98 \mathrm{eV} / \text { atom }}{\left(8.62 \times 10^{-5} \mathrm{eV} / \mathrm{K}\right)(800+273 \mathrm{~K})}\right\rfloor \\
=1.432 \times 10^{18} \mathrm{vacancies} / \mathrm{cm}^{3}
\end{gathered}
$$

We now want to determine the number of vacancies per unit cell, which is possible if the unit cell volume is multiplied by N_{V}. The unit cell volume (V_{C}) may be calculated using Equation 3.5 taking $n=4$ inasmuch as Au has the FCC crystal structure. Thus, from a rearranged form of Equation 3.5

$$
\begin{gathered}
V_{C}=\frac{n A_{\mathrm{Au}}}{\rho_{\mathrm{Au}} N_{\mathrm{A}}} \\
=\frac{(4 \text { atoms } / \text { unit cell })(196.97 \mathrm{~g} / \mathrm{mol})}{\left(18.699 \mathrm{~g} / \mathrm{cm}^{3}\right)\left(6.023 \times 10^{23} \mathrm{atoms} / \mathrm{mol}\right)} \\
=6.996 \times 10^{-23} \mathrm{~cm}^{3} / \text { unit cell }
\end{gathered}
$$

Now, the number of vacancies per unit cell, n_{v}, is just

$$
\begin{gathered}
n_{v}=N_{v} V_{C} \\
=\left(1.432 \times 10^{18} \text { vacancies } / \mathrm{cm}^{3}\right)\left(6.996 \times 10^{-23} \mathrm{~cm}^{3} / \text { unit cell }\right) \\
=0.0001002 \text { vacancies } / \text { unit cell }
\end{gathered}
$$

What this means is that instead of there being 4.0000 atoms per unit cell, there are only $4.0000-0.0001002=$ 3.9998998 atoms per unit cell. And, finally, the density may be computed using Equation 3.5 taking $n=3.9998998$; thus

