19.11 In this problem we are asked to determine the density of iron at $700^{\circ} \mathrm{C}$. Let us use as the basis for this determination $1 \mathrm{~cm}^{3}$ of material at $20^{\circ} \mathrm{C}$, which has a mass of 7.870 g ; it is assumed that this mass will remain constant upon heating to $700^{\circ} \mathrm{C}$. Let us compute the volume expansion of this cubic centimeter of iron as it is heated to $700^{\circ} \mathrm{C}$. A volume expansion expression is given in Equation 19.4-viz.,

$$
\frac{\Delta V}{V_{0}}=\alpha_{v} \Delta T
$$

or

$$
\Delta V=V_{0} \alpha_{v} \Delta T
$$

Also, $\alpha_{v}=3 \alpha_{l}$, as stipulated in the problem. The value of α_{l} given in Table 19.1 for iron is $11.8 \times 10^{-6}\left({ }^{\circ} \mathrm{C}\right)^{-1}$. Therefore, the volume, V, of this specimen of Fe at $700^{\circ} \mathrm{C}$ is just

$$
\begin{gathered}
V=V_{0}+\Delta V=V_{0}\left(1+\alpha_{v} \Delta T\right)=V_{0}\left(1+3 \alpha_{l} \Delta T\right) \\
=\left(1 \mathrm{~cm}^{3}\right)\left\{1+(3)\left[11.8 \times 10^{-6}\left({ }^{\circ} \mathrm{C}\right)^{-1}\right]\left(700^{\circ} \mathrm{C}-20^{\circ} \mathrm{C}\right)\right\} \\
=1.02471 \mathrm{~cm}^{3}
\end{gathered}
$$

Thus, the density is just the 7.870 g divided by this new volume-i.e.,

$$
\rho=\frac{7.870 \mathrm{~g}}{1.02471 \mathrm{~cm}^{3}}=7.680 \mathrm{~g} / \mathrm{cm}^{3}
$$

