CHAPTER 19

THERMAL PROPERTIES

PROBLEM SOLUTIONS

Heat Capacity

19.1 The energy, E, required to raise the temperature of a given mass of material, m, is the product of the specific heat, the mass of material, and the temperature change, ΔT, as

$$
E=c_{p} m \Delta T
$$

The ΔT in this problem is equal to $150^{\circ} \mathrm{C}-20^{\circ} \mathrm{C}=130^{\circ} \mathrm{C}(=130 \mathrm{~K})$, while the mass is 5 kg , and the specific heats are presented in Table 19.1. Thus,

$$
\begin{gathered}
E(\text { aluminum })=(900 \mathrm{~J} / \mathrm{kg}-\mathrm{K})(5 \mathrm{~kg})(130 \mathrm{~K})=5.85 \times 10^{5} \mathrm{~J} \\
E(\text { brass })=(375 \mathrm{~J} / \mathrm{kg}-\mathrm{K})(5 \mathrm{~kg})(130 \mathrm{~K})=2.44 \times 10^{5} \mathrm{~J} \\
E(\text { alumina })=(775 \mathrm{~J} / \mathrm{kg}-\mathrm{K})(5 \mathrm{~kg})(130 \mathrm{~K})=5.04 \times 10^{5} \mathrm{~J} \\
E(\text { polypropylene })=(1925 \mathrm{~J} / \mathrm{kg}-\mathrm{K})(5 \mathrm{~kg})(130 \mathrm{~K})=1.25 \times 10^{6} \mathrm{~J}
\end{gathered}
$$

