Semiconductor Devices

18.D7 (a) In this portion of the problem we are asked to determine the time required to grow a layer of SiO_{2} that is 100 nm (i.e., $0.100 \mu \mathrm{~m}$) thick on the surface of a silicon chip at $1000^{\circ} \mathrm{C}$, in an atmosphere of O_{2} $($ oxygen pressure $=1 \mathrm{~atm})$. Thus, using Equation 18.37, it is necessary to solve for the time t. However, before this is possible, we must calculate the value of B from Equation 18.38 a as follows:

$$
\begin{gathered}
B=800 \exp \left(-\frac{1.24 \mathrm{eV}}{k T}\right)=(800) \exp \left[-\frac{1.24 \mathrm{eV}}{\left(8.62 \times 10^{-5} \mathrm{eV} / \text { atom }-\mathrm{K}\right)(1000+273 \mathrm{~K})}\right] \\
=0.00990 \mathrm{~mm}^{2} / \mathrm{h}
\end{gathered}
$$

Now, solving for t from Equation 18.37 using the above value for B and that $x=0.100 \mu \mathrm{~m}$, we have

$$
\begin{aligned}
t=\frac{x^{2}}{B} & =\frac{(0.100 \mu \mathrm{~m})^{2}}{0.00990 \mu \mathrm{~m}^{2} / \mathrm{h}} \\
& =1.01 \mathrm{~h}
\end{aligned}
$$

Repeating the computation for B at $700^{\circ} \mathrm{C}$:

$$
\begin{gathered}
B=(800) \exp \left[-\frac{1.24 \mathrm{eV}}{\left(8.62 \times 10^{-5} \mathrm{eV} / \text { atom }-\mathrm{K}\right)(700+273 \mathrm{~K})}\right] \\
=3.04 \times 10^{-4} \mathrm{\mu m}^{2} / \mathrm{h}
\end{gathered}
$$

And solving for the oxidation time as above

$$
t=\frac{(0.100 \mu \mathrm{~m})^{2}}{3.04 \times 10^{-4} \mu \mathrm{~m}^{2} / \mathrm{h}}=32.9 \mathrm{~h}
$$

(b) This part of the problem asks for us to compute the heating times to form an oxide layer 100 nm thick at the same two temperatures $\left(1000^{\circ} \mathrm{C}\right.$ and $\left.700^{\circ} \mathrm{C}\right)$ when the atmosphere is water vapor (1 atm pressure). At $1000^{\circ} \mathrm{C}$, the value of B is determined using Equation 18.38b, as follows:

