$$
=0.107
$$

Now, solving for A in Equation 18.11

$$
\begin{gathered}
A=\frac{\rho_{i}}{c_{\mathrm{Ni}}^{\prime}\left(1-c_{\mathrm{Ni}}^{\prime}\right)} \\
=\frac{1.73 \times 10^{-7}(\Omega-\mathrm{m})}{(0.107)(1-0.107)}=1.81 \times 10^{-6}(\Omega-\mathrm{m})
\end{gathered}
$$

Now it is possible to compute the c_{Ni}^{\prime} to give a room temperature resistivity of $2.5 \times 10^{-7} \Omega-\mathrm{m}$. Again, we must determine ρ_{i} as

$$
\begin{gathered}
\rho_{i}=\rho_{\text {total }}-\rho_{t} \\
=2.5 \times 10^{-7}-1.67 \times 10^{-8}=2.33 \times 10^{-7}(\Omega-\mathrm{m})
\end{gathered}
$$

If Equation 18.11 is expanded, then

$$
\rho_{i}=A c_{\mathrm{Ni}}^{\prime}-A c_{\mathrm{Ni}}^{\prime 2}
$$

Or, rearranging this equation, we have

$$
A c_{\mathrm{Ni}}^{\prime 2}-A c_{\mathrm{Ni}}^{\prime}+\rho_{i}=0
$$

Now, solving for c_{Ni}^{\prime} (using the quadratic equation solution)

$$
c_{\mathrm{Ni}}^{\prime}=\frac{A \pm \sqrt{A^{2}-4 A \rho_{i}}}{2 A}
$$

Again, from the above

$$
\begin{aligned}
& A=1.81 \times 10^{-6}(\Omega-\mathrm{m}) \\
& \rho_{i}=2.33 \times 10^{-7}(\Omega-\mathrm{m})
\end{aligned}
$$

