18.54 (a) In order to solve for the dielectric constant in this problem, we must employ Equation 18.32, in which the polarization and the electric field are given. Solving for ε_{r} from this expression gives

$$
\begin{gathered}
\varepsilon_{r}=\frac{P}{\varepsilon_{0} E}+1 \\
=\frac{4.0 \times 10^{-6} \mathrm{C} / \mathrm{m}^{2}}{\left(8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}\right)\left(1 \times 10^{5} \mathrm{~V} / \mathrm{m}\right)}+1 \\
=5.52
\end{gathered}
$$

(b) The dielectric displacement may be determined using Equation 18.31, as

$$
\begin{gathered}
D=\varepsilon_{0} E+P \\
=\left(8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}\right)\left(1 \times 10^{5} \mathrm{~V} / \mathrm{m}\right)+4.0 \times 10^{-6} \mathrm{C} / \mathrm{m}^{2} \\
=4.89 \times 10^{-6} \mathrm{C} / \mathrm{m}^{2}
\end{gathered}
$$

