18.42 In this problem we are asked to determine the magnetic field required to produce a Hall voltage of -3.5 x 10⁻⁷ V, given that $\sigma = 1.2 \times 10^7 (\Omega \text{-m})^{-1}$, $\mu_e = 0.0050 \text{ m}^2/\text{V-s}$, $I_x = 40 \text{ A}$, and d = 35 mm. Combining Equations 18.18 and 18.20b, and after solving for B_z , we get

$$B_z = \frac{\left| V_{\rm H} \right| \sigma d}{I_x \mu_e}$$

$$= \frac{\left(\left|-3.5 \times 10^{-7} \text{ V}\right|\right) \left[1.2 \times 10^{7} (\Omega - \text{m})^{-1}\right] (35 \times 10^{-3} \text{ m})}{(40 \text{ A})(0.0050 \text{ m}^{2}/\text{V-s})}$$

= 0.74 tesla

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.