18.42 In this problem we are asked to determine the magnetic field required to produce a Hall voltage of $-3.5 \times 10^{-7} \mathrm{~V}$, given that $\sigma=1.2 \times 10^{7}(\Omega-\mathrm{m})^{-1}, \mu_{e}=0.0050 \mathrm{~m}^{2} / \mathrm{V}-\mathrm{s}, I_{X}=40 \mathrm{~A}$, and $d=35 \mathrm{~mm}$. Combining Equations 18.18 and 18.20 b , and after solving for B_{z}, we get

$$
\begin{gathered}
B_{z}=\frac{\left|V_{\mathrm{H}}\right| \sigma d}{I_{x} \mu_{e}} \\
=\frac{\left(\left|-3.5 \times 10^{-7} \mathrm{~V}\right|\right)\left[1.2 \times 10^{7}(\Omega-\mathrm{m})^{-1}\right]\left(35 \times 10^{-3} \mathrm{~m}\right)}{(40 \mathrm{~A})\left(0.0050 \mathrm{~m}^{2} / \mathrm{V}-\mathrm{s}\right)} \\
=0.74 \text { tesla }
\end{gathered}
$$

