18.36 This question asks that we compare and then explain the difference in temperature dependence of the electrical conductivity for metals and intrinsic semiconductors.

For metals, the temperature dependence is described by Equation 18.10 (and converting from resistivity to conductivity using Equation 18.4), as

$$\sigma = \frac{1}{\rho_0 + aT}$$

That is, the electrical conductivity decreases with increasing temperature.

Alternatively, from Equation 18.8, the conductivity of metals is equal to

$$\sigma = n | e | \mu_e$$

As the temperature rises, *n* will remain virtually constant, whereas the mobility (μ_e) will decrease, because the thermal scattering of free electrons will become more efficient. Since |e| is independent of temperature, the net result will be diminishment in the magnitude of σ .

For intrinsic semiconductors, the temperature-dependence of conductivity is just the opposite of that for metals—i.e, conductivity increases with rising temperature. One explanation is as follows: Equation 18.15 describes the conductivity; i.e.,

$$\sigma = n | e | (\mu_e + \mu_h) = p | e | (\mu_e + \mu_h)$$
$$= n_i | e | (\mu_e + \mu_h)$$

Both *n* and *p* increase dramatically with rising temperature (Figure 18.16), since more thermal energy becomes available for valence band-conduction band electron excitations. The magnitudes of μ_e and μ_h will diminish somewhat with increasing temperature (per the upper curves of Figures 18.19a and 18.19b), as a consequence of the thermal scattering of electrons and holes. However, this reduction of μ_e and μ_h will be overwhelmed by the increase in *n* and *p*, with the net result is that σ increases with temperature.

An alternative explanation is as follows: for an intrinsic semiconductor the temperature dependence is represented by an equation of the form of Equation 18.36. This expression contains two terms that involve temperature—a preexponential one (in this case $T^{-3/2}$) and the other in the exponential. With rising temperature the preexponential term decreases, while the exp $(-E_g/2kT)$ parameter increases. With regard to relative magnitudes, the exponential term increases much more rapidly than the preexponential one, such that the electrical conductivity of an intrinsic semiconductor increases with rising temperature.

Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has been adopted. Any other reproduction or translation of this work beyond that permitted by Sections 107 or 108 of the 1976 United States Copyright Act without the permission of the copyright owner is unlawful.