18.2 For this problem, given that an aluminum wire 10 m long must experience a voltage drop of less than 1.0 V when a current of 5 A passes through it, we are to compute the minimum diameter of the wire. Combining Equations 18.3 and 18.4 and solving for the cross-sectional area A leads to

$$
A=\frac{I l}{V \sigma}
$$

From Table 18.1, for aluminum $\sigma=3.8 \times 10^{7}(\Omega-\mathrm{m})^{-1}$. Furthermore, inasmuch as $A=\pi\left(\frac{d}{2}\right)^{2}$ for a cylindrical wire, then

$$
\pi\left(\frac{d}{2}\right)^{2}=\frac{I l}{V \sigma}
$$

or

$$
d=\sqrt{\frac{4 I l}{\pi V \sigma}}
$$

When values for the several parameters given in the problem statement are incorporated into this expression, we get

$$
\begin{aligned}
& d=\sqrt{\frac{(4)(5 \mathrm{~A})(10 \mathrm{~m})}{(\pi)(1.0 \mathrm{~V})\left[3.8 \times 10^{7}(\Omega-\mathrm{m})^{-1}\right]}} \\
&=1.3 \times 10^{-3} \mathrm{~m}=1.3 \mathrm{~mm}
\end{aligned}
$$

