The value cited in Table 18.3 is 1.11 eV .

Now for Ge , an analogous plot is shown below.

We calculate the slope and band gap energy values in the manner outlined above. Let us take $1 / T_{1}=0.001$ and $1 / T_{2}$ $=0.011$; their corresponding $\ln \eta$ values are $\ln \eta_{1}=55.56$ and $\ln \eta_{2}=14.80$. Incorporating these values into the above expression leads to a slope of

$$
\text { Slope }=\frac{55.56 \text { ŹŹ } 14.80}{0.001-0.011}=-4076
$$

This slope leads to an E_{g} value of

$$
\begin{gathered}
E_{g}=-2 k(\text { Slope }) \\
=-2\left(8.62 \times 10^{-5} \mathrm{eV} / \mathrm{K}\right)(-4076)=0.70 \mathrm{eV}
\end{gathered}
$$

This value is in good agreement with the 0.67 eV cited in Table 18.3.

