18.19 This problem asks that we make plots of $\ln n_{i}$ versus reciprocal temperature for both Si and Ge , using the data presented in Figure 18.16, and then determine the band gap energy for each material realizing that the slope of the resulting line is equal to $-E_{g} / 2 k$.

Below is shown such a plot for Si .

The slope of the line is equal to

$$
\text { Slope }=\frac{\Delta \ln \eta_{i}}{\Delta\left(\frac{1}{T}\right)}=\frac{\ln \eta_{1}-\ln \eta_{2}}{\frac{1}{T_{1}}-\frac{1}{T_{2}}}
$$

Let us take $1 / T_{1}=0.001$ and $1 / T_{2}=0.007$; their corresponding $\ln \eta$ values are $\ln \eta_{1}=54.80$ and $\ln \eta_{2}=16.00$. Incorporating these values into the above expression leads to a slope of

$$
\text { Slope }=\frac{54.80 \text { ŹŹ } 16.00}{0.001-0.007}=-6470
$$

This slope leads to an E_{g} value of

$$
\begin{gathered}
E_{g}=-2 k \text { (Slope) } \\
=-2\left(8.62 \times 10^{-5} \mathrm{eV} / \mathrm{K}\right)(-6470)=1.115 \mathrm{eV}
\end{gathered}
$$

