18.14 (a) Perhaps the easiest way to determine the values of ρ_{0} and a in Equation 18.10 for pure copper in Figure 18.8 , is to set up two simultaneous equations using two resistivity values (labeled $\rho_{t 1}$ and $\rho_{t 2}$) taken at two corresponding temperatures $\left(T_{1}\right.$ and $\left.T_{2}\right)$. Thus,

$$
\begin{aligned}
& \rho_{t 1}=\rho_{0}+a T_{1} \\
& \rho_{t 2}=\rho_{0}+a T_{2}
\end{aligned}
$$

And solving these equations simultaneously lead to the following expressions for a and ρ_{0} :

$$
\begin{gathered}
a=\frac{\rho_{t 1}-\rho_{t 2}}{T_{1}-T_{2}} \\
\rho_{0}=\rho_{t 1}-T_{1}\left[\frac{\rho_{t 1}-\rho_{t 2}}{T_{1}-T_{2}}\right] \\
=\rho_{t 2}-T_{2}\left[\frac{\rho_{t 1}-\rho_{t 2}}{T_{1}-T_{2}}\right]
\end{gathered}
$$

From Figure 18.8 , let us take $T_{1}=-150^{\circ} \mathrm{C}, T_{2}=-50^{\circ} \mathrm{C}$, which gives $\rho_{t 1}=0.6 \times 10^{-8}(\Omega-\mathrm{m})$, and $\rho_{t 2}=1.25 \times 10^{-8}$ ($\Omega-\mathrm{m}$). Therefore

$$
\begin{gathered}
a=\frac{\rho_{t 1}-\rho_{t 2}}{T_{1}-T_{2}} \\
=\frac{\left[\left(0.6 \times 10^{-8}\right)-\left(1.25 \times 10^{-8}\right)\right](\Omega-\mathrm{m})}{-150^{\circ} \mathrm{C}-\left(-50^{\circ} \mathrm{C}\right)} \\
6.5 \times 10^{-11}(\Omega-\mathrm{m}) /{ }^{\circ} \mathrm{C}
\end{gathered}
$$

and

$$
\rho_{0}=\rho_{t 1}-T_{1}\left[\frac{\rho_{t 1}-\rho_{t 2}}{T_{1}-T_{2}}\right]
$$

