Electrical Resistivity of Metals

18.13 We want to solve for the parameter A in Equation 18.11 using the data in Figure 18.37. From Equation 18.11

$$A = \frac{\rho_i}{c_i \left(1 - c_i\right)}$$

However, the data plotted in Figure 18.37 is the total resistivity, ρ_{total} , and includes both impurity (ρ_i) and thermal (ρ_t) contributions (Equation 18.9). The value of ρ_t is taken as the resistivity at $c_i = 0$ in Figure 18.37, which has a value of 1.7 x 10⁻⁸ (Ω -m); this must be subtracted out. Below are tabulated values of A determined at $c_i = 0.10$, 0.20, and 0.30, including other data that were used in the computations. (*Note:* the c_i values were taken from the upper horizontal axis of Figure 18.37, since it is graduated in atom percent zinc.)

c_i	$1 - c_i$	$\rho_{total}\left(\Omega\text{-}m\right)$	ρ _i (Ω-m)	A (Ω-m)
0.10	0.90	4.0 x 10 ⁻⁸	2.3 x 10 ⁻⁸	2.56 x 10 ⁻⁷
0.20	0.80	5.4 x 10 ⁻⁸	3.7 x 10 ⁻⁸	2.31 x 10 ⁻⁷
0.30	0.70	6.15 x 10 ⁻⁸	4.45 x 10 ⁻⁸	2.12 x 10 ⁻⁷

So, there is a slight decrease of A with increasing c_i .