When Does a Crack Propagate?

Crack propagates if above critical stress

i.e.,
$$\sigma_m > \sigma_c$$

or $K_t > K_c$ $\sigma_c = \left(\frac{2E\gamma_s}{\pi a}\right)^{1/2}$

where

- E = modulus of elasticity

$$-\gamma_s$$
 = specific surface energy

$$-K_c = \sigma_c / \sigma_0$$

For ductile => replace γ_s by $\gamma_s + \gamma_p$ where γ_p is plastic deformation energy

Lab Assignment

- Split into groups of 3
 - Each group gets 8 paper clips

- 45
- 90
- 135
- 180
- Keep track of the number of cycles to failure for each test.

X

Fatigue

• Fatigue = failure under cyclic stress.

Adapted from Fig. 8.18, *Callister 7e.* (Fig. 8.18 is from *Materials Science in Engineering*, 4/E by Carl. A. Keyser, Pearson Education, Inc., Upper Saddle River, NJ.)

- Stress varies with time. -- key parameters are S, σ_m , and frequency σ_m
- Key points: Fatigue...
 - --can cause part failure, even though $\sigma_{max} < \sigma_c$.
 - --causes ~ 90% of mechanical engineering failures.

Fatigue Design Parameters

Chapter 8 - 7

Fatigue Mechanism

• Crack grows incrementally

increase in crack length per loading cycle

- Failed rotating shaft --crack grew even though
 - $K_{max} < K_{c}$
 - --crack grows faster as
 - $\Delta \sigma$ increases
 - crack gets longer
 - loading freq. increases.

Adapted from Fig. 8.21, *Callister 7e.* (Fig. 8.21 is from D.J. Wulpi, *Understanding How Components Fail*, American Society for Metals, Materials Park, OH, 1985.)

crack origin

Improving Fatigue Life

Sample deformation at a constant stress (σ) vs. time

decreases with time.

Secondary Creep: steady-state i.e., constant slope.

Tertiary Creep: slope (creep rate) increases with time, i.e. acceleration of rate.

Adapted from Fig. 8.28, *Callister 7e.*

Time, t

Chapter 8 - 10

 t_r

Creep

• Occurs at elevated temperature, $T > 0.4 T_m$

Callister 7e.

Secondary Creep

- Strain rate is constant at a given T, σ
 - -- strain hardening is balanced by recovery

8.14

Creep Failure

- Failure:
 - along grain boundaries.

From V.J. Colangelo and F.A. Heiser, *Analysis of Metallurgical Failures* (2nd ed.), Fig. 4.32, p. 87, John Wiley and Sons, Inc., 1987. (Orig. source: Pergamon Press, Inc.)

• Time to rupture, t_r $T(20 + \log t_r) = L$ temperature function of applied stress time to failure (rupture)

• Estimate rupture time S-590 Iron, $T = 800^{\circ}$ C, $\sigma = 20$ ksi

Designing for

optoelectronis

University

- Creep resistant solders for dimensional stability
- Non-brittle intermetallics and smooth bonding interfaces for *long term reliability*

Need a series of solders melting at successively lower temps

SUMMARY

- Engineering materials don't reach theoretical strength.
- Flaws produce stress concentrations that cause premature failure.
- Sharp corners produce large stress concentrations and premature failure.
- Failure type depends on *T* and stress:
 - for noncyclic σ and $T < 0.4 T_m$, failure stress decreases with:
 - increased maximum flaw size,
 - decreased T,
 - increased rate of loading.
 - for cyclic σ :
 - cycles to fail decreases as $\Delta\sigma$ increases.
 - for higher $T(T > 0.4T_m)$:
 - time to fail decreases as σ or ${\it T}$ increases.

Ch 8 summary

- Additional homework from Ch. 8
 - 8.14, 8.15, 8.16, 8.22, 8.25, 8.26, 8.28, 8.29
- Sections not covered, not tested

-8.6, 8.15