Announcements

- About half of the quizzes (WebCT#2) are graded.
- Today, we have a **DEMO!**

Phase Equilibria

Simple solution system (e.g., Ni-Cu solution)

	Crystal Structure	electroneg	<i>r</i> (nm)	Valence
Ni	FCC	1.9	0.1246	2+
Cu	FCC	1.8	0.1278	1+

- Both have the same crystal structure (FCC) and have similar electronegativities and atomic radii (W. Hume – Rothery rules) suggesting high mutual solubility.
- Ni and Cu are totally miscible in all proportions.

Phase Diagrams

- Indicate phases as function of *T*, *C*₀, and *P*.
- For this course:

-binary systems: just 2 components.

-independent variables: T and C_O (P = 1 atm is almost always used).

Phase Diagrams: # and types of phases

• Rule 1: If we know *T* and *C*₀, then we know: --the # and types of phases present.

Phase Diagrams: composition of phases

- Rule 2: If we know *T* and *C*₀, then we know: --the composition of each phase.
- Examples:

 $C_{O} = 35 \text{ wt\% Ni}$ At $T_{A} = 1320^{\circ}\text{C}$: Only Liquid (L) $C_{L} = C_{O} (= 35 \text{ wt\% Ni})$ At $T_{D} = 1190^{\circ}\text{C}$: Only Solid (α) $C_{\alpha} = C_{O} (= 35 \text{ wt\% Ni})$ At $T_{B} = 1250^{\circ}\text{C}$: Both α and L

 $C_L = C_{\text{liquidus}}$ (= 32 wt% Ni here)

 $C_{\alpha} = C_{\text{solidus}}$ (= 43 wt% Ni here)

Adapted from Fig. 9.3(b), *Callister 7e.* (Fig. 9.3(b) is adapted from *Phase Diagrams of Binary Nickel Alloys*, P. Nash (Ed.), ASM International, Materials Park, OH, 1991.)

Phase Diagrams: weight fractions of phases

- Rule 3: If we know *T* and *C*₀, then we know: --the amount of each phase (given in wt%).
- Examples:

```
C_{O} = 35 \text{ wt\% Ni}
At T_{A}: Only Liquid (L)

W_{L} = 100 \text{ wt\%}, W_{\alpha} = 0

At T_{D}: Only Solid (\alpha)

W_{L} = 0, W_{\alpha} = 100 \text{ wt\%}

At T_{B}: Both \alpha and L
```

$$W_{L} = \frac{S}{R+S} = \frac{43-35}{43-32} = 73 \text{ wt\%}$$
$$W_{\alpha} = \frac{R}{R+S} = 27 \text{ wt\%}$$

PIP

Adapted from Fig. 9.3(b), *Callister 7e.* (Fig. 9.3(b) is adapted from *Phase Diagrams of Binary Nickel Alloys*, P. Nash (Ed.), ASM International, Materials Park, OH, 1991.)

The Lever Rule

• Tie line – connects the phases in equilibrium with each other - essentially an isotherm

How much of each phase? Think of it as a lever (teeter-totter)

$$M_{\alpha} \cdot S = M_{L} \cdot R$$

$$W_{\alpha} = \frac{R}{R+S} = \frac{C_0 - C_L}{C_{\alpha} - C_L}$$

Ex: Cooling in a Cu-Ni Binary

- Phase diagram: Cu-Ni system.
- System is:
 - --binary
 - *i.e.*, 2 components: Cu and Ni.
 - --isomorphous
 - i.e., complete solubility of one component in another; α phase field extends from 0 to 100 wt% Ni.
- Consider

 $C_0 = 35 \text{ wt\%Ni}.$

EX: Pb-Sn Eutectic System (1)

EX: Pb-Sn Eutectic System (2)

Microstructures in Eutectic Systems: I

Microstructures in Eutectic Systems: II

Microstructures in Eutectic Systems: III

- $C_o = C_E$
- Result: Eutectic microstructure (lamellar structure) --alternating layers (lamellae) of α and β crystals.

eutectic microstructure $160 \,\mu m$

Adapted from Fig. 9.14, Callister 7e.

Lamellar Eutectic Structure

Adapted from Figs. 9.14 & 9.15, *Callister 7e.*

Rod-Like, Ag-Sn

Lamellar, Pb-Sn

Disordered, Au-Sn

Microstructures in Eutectic Systems: IV

- 18.3 wt% Sn < C_0 < 61.9 wt% Sn
- Result: α crystals and a eutectic microstructure

Hypoeutectic & Hypereutectic

STEEL PHASE DIAG

Eutectoid Steel

Note: intermetallic compound forms a line - not an area - because stoichiometry (i.e. composition) is exact.

