Announcements - Problem Sets

- Set 1 (Assigned 08Jan in lecture): 2.5, 2.6, 2.7, 2.9, 2.11, 2.13, 2.15, 2.18, 2.20, 2.21, 2.22, 3.1, 3.2, 3.5, 3.6, 3.7, 3.10 *SOLUTIONS ON WEBCT NOW*
- Set 2 (Assigned 12Jan via WebCT): 3.17, 3.20, 3.21, 3.37, 3.39, 3.40, 3.41, 3.42, 3.56, 3.57, 3.59
- Problems from Ch. 3 (Sets 1\&2) will be addressed in tutorials starting Wednesday.
- Tutorial quizzes begin this Wednesday.

Last time...
 CCP

- Close packing (FCC and HCP) for pure metals, also a common non-close packed structure (BCC)

This time...

- More on why it is important
- Points, directions, planes
- Diffraction

$$
a=b \neq c \quad \alpha=\beta=\gamma=90^{\circ}
$$

Callister
p. 47
$G H C P$
Tetragonal

Rhombohedral

$$
a=b=c
$$

$\alpha=\beta=\gamma \neq 90^{\circ}$
(Trigonal)

$$
\text { Rhombohedral } \quad a=b=c \quad \alpha=\beta=\gamma \neq 90^{\circ}
$$

(Trigonal)

Callister
p. 47

Characterization of Crystal Structure

- Primary tools
- X-ray diffraction
- Electron diffraction (in transmission electron microscope)
- Auxiliary tools (to confirm elements present)
- Scanning electron microscopy + a spectroscopy technique
- Raman spectroscopy
- Many others *

Growth of nanowire superlattice structures for nanoscale photonics and electronics

Mark S. Gudiksen* \dagger, Lincoln J. Lauhon* ${ }^{\dagger}$, Jianfang Wang*, David C. Smith ${ }^{*} \ddagger$ \& Charles M. Lieher ${ }^{*} \$$

* Department of Chemistry and Chemical Biology, $\$$ Division of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
\dagger These authors contributed equally to this work
The assembly of semiconductor nanowires and carbon nanotubes into nanoscale devices and circuits could enable diverse applications in nanoelectronics and photonics ${ }^{1}$. Individual semiconduct-ing-nanowires hawe-already been cenfigured as field-effect tronsistors s^{2}, photddetectors ${ }^{3}$ and bo/chem cal sensors ${ }^{4}$. More sophisticated light-emitting diodes ${ }^{5}$ (EEDS and complementary and diode logic ${ }^{6-8}$ devices have been realized using both n - and p typs semiconducting nanowires or nanotubes. The n - and p-type materials have been incorporated in these latter devices either by crossing p- and n-type nanowires ${ }^{256,9}$ or by lithographically defining distinct p - and n-type regions in nanotubes ${ }^{8,10}$, although both strategies limit device complexity. In the planar semiconductor industry, intricate n - and p -type and more generally compositionally modulated (that is, superlattice) structures are used to enable versatile electronic and photonic functions. Here we demonstrate the synthesis of semiconductor nanowire superlattices from group III-V and group IV materials. (The superlattices are created within the nanowires by repeated modulation of the vapour-phase semicenductor reactants during growth of the wires.) Con positional y modulated superlattices consisting of 2 to 21 layers d GaAs and GaP have been prepared. Furthermore, $\mathrm{n}-\mathrm{Si} / \mathrm{p}-\mathrm{Si}$ and $\mathrm{NaP} / \mathrm{p}-\mathrm{In}-$ modulation doped nanowires have been synthesized. Single-nanowire photoluminescence, electrical transpory and electroluminescence measurements show the unique fhotonic and electronic properties of these nanowire superlattices, and suggest potential applications ranging from nano-barcodes to polarized nanoscale LEDs.

‘Cutting edge’ electrical

 engineering example
Linked to on WebCT:

M.S. Gudiksen, et al. Nature 415, 617 (2002).

Figure $2 \mathrm{GaAs} / \mathrm{GaP}$ nanowire junctions. a, High-resolution TEM of a GaAs/GaP junction grown from a 20 -nm gold nanocluster catalyst. Scale bar, 10 nm . Inset, two-dimensional Fourier transforms of the entire image show a splitting of the reciprocal lattice peaks along the $\langle 111\rangle,\langle 111\rangle$ and $\langle\overline{200}$) lattice directions in the [022] zone axis, corresponding to the lattice constants for GaAs and GaP (see text). The presence of the heterojunction was confirmed by EDS analysis above and below the junction region (not shown). b, TEM image of another junction. Scale bar, $20 \mathrm{~nm} . \mathrm{c}, \mathrm{d}, \mathrm{e}$, Elemental mapping of the Ga (shown
grey), P (red) and As (blue) content of the junction shown in b. A scanning TEM was used to take an elemental 'Image' of the junction. \mathbf{f}, Line profiles of the composition throughthe junction region, showing the change in composition as a function of the distance. The slightly higher Ga (shown black) signal relative to the P (red) and As (blue) signals may be due to uncertainties in the detector calibration or the presence of an amorphous gallium oxide layer around the crystalline nanowire core.

Bragg's Law - X-ray diffraction

$$
n \lambda=2 \lambda \sin \theta
$$

1. Example - Pure Pb
Miller Indices

Callister has example of how this type of experiment is conducted.

Crystallographic Databases

Volume[CD]: 89.39.

Ref: Ibid.

Peak height intensity. As Ni type. PSC: hP4. Mwt: 315.66.

| Rad.: CuKa1 $\lambda: 1.54060$ Filter: | d-sp: Calculated |
| :--- | :--- | :--- |
| Cut off: Int.: Calculated | |
| Ref: Calculated from NIST using POWD-12++ | |
| Ref: S.Stenbeck \& A.Westgren, Z. Phys. Chom. | (B), B14, 91 (1931) |

7 8

8
91
$94.587 \quad 1$
$100.479137 \quad 1 \quad 1 \quad 4$ $\begin{array}{lllll}103.731 & 7 & 3 & 0 & 2\end{array}$ $\begin{array}{lllll}105.742 & 27 & 2 & 1 & 3\end{array}$ $107.21920 \quad 2 \quad 0 \quad 4$ $\begin{array}{lllll}115.192 & 11 & 1 & 0 & 5\end{array}$
Gold Tin
$111.717 \quad 52 \quad 2 \quad 20$

Crystallographic Databases

$\mathrm{Au}-\mathrm{Sn}$

Phase diagram: Partial c-T diagram given for the concentration range $12-22 \mathrm{at} . \% \mathrm{Sn}$ Reference: K. Osada, S. Yamaguchi and M. Hirabayashi, "An Ordered Structure of $A u_{5} S n$." TRANSACTIONS OF THE JAPAN INSTITUTE OF METALS, 15, 256-260 (1974)

Reference: J.S. Charlton, M. Cordey-Hayes and I.R. Harris, ${ }^{\text {A A STUDY OF THE 119Sn MOSSBA UER ISOMER }}$ SHIFTS IN SOME PLATINUM-TIN AND GOLD-TIN ALLOYS." JOURNAL OF THE LESS-COMMON G Gel e
METALS, 20, 105-112 (1970)

AuSn

$a=0.43218 \mathrm{~nm}$

Structure Type Pearson Symbol AsNi
$h P 4$

$$
\begin{array}{rlr}
c=0.55230 \mathrm{~nm} & & \\
x=0 & y=0 & z=0 \\
x=1 / 3 & y=2 / 3 & z=1 / 4
\end{array}
$$

Space Group No.
ar e $\mathrm{Pb}_{3} / \mathrm{mmc} \quad 194$ $\gamma=120^{\circ}$
occ. $=1$
occ. $=1$

Miscellaneous: $d_{m}=11.72 \mathrm{~g} / \mathrm{cm}^{3}$
Diffraction data: Powder, Guinier, $\mathrm{Cu}, R=0.105$
Preparation: Heated in evacuated silica tube; annealed at 563 K ; quenched
T-, p - or concen.dependence: $A u_{x} S n, \mathrm{x}=0.98-1.00, \mathrm{a}=0.43136-0.43218 \mathrm{~nm}, \mathrm{c}=0.55172-0.55230 \mathrm{~nm}$, linear dependence
Reference: J.-P. Jan, W.B. Pearson, A. Kjekshus and S.B. Woods, ${ }^{\text {s }}$ ON THE STRUCTURAL, THERMAL, ELECTRICAL, AND MAGNETIC PROPERTIES OF AuSn." CANADIAN JOURNAL OF PHYSICS, 41, 22522266 (1963)

Summary (of pep talk)

- All of the crystal systems and their symmetry are 'known':
- http://cst-www.nrl.navy.mil/lattice/
- If a new material comes up, a crystallographer can match the diffraction data to known systems and determine which is most likely and the atomic positions.
- If it is a known material, you can use XRD, ED to identify materials present and analyze its structure
- Grain size, defects, stress \Subset
- For an electrical engineer, you would need to know how this all works.
- You might be asked to characterize a material as part of your job
- Or, you might need to communicate with another engineer that is characterizing your device for you.

CRYSTALLOGRAPHIC PLANES AND DIRECTIONS

Plane: plane section through a crystal or unit cell;
Direction: vector drawn through a crystal or unit cell -different planes and directions have different atomic arrangements.
-therefore when crystals are subjected to external stimuli
(e.g. applied load, corrosive environment, magnetic props)
different planes and directions respond in different ways.
i.e. Property depends on crystal orientation

MILLER INDICES

Notation used to describe specific
locations (points). directions, and planes in a crystal lattice (unit cell)*

'representation'

CUBIC: simplest
concept same for all unit cell types

POINTS

Define coordinate system right hand cartesian

Orient coordinate system align axes:
parallel to unit cell edges
label axes ($\mathrm{x}, \mathrm{y}, \mathrm{z}$)
define origin
"arbitrary"
Always*:
Define origin
Label axes
Positions quantified as fractions of lattice parameters

How to locate a miller indices point in the lattice
e.g. 1,1,1
'travel' from origin
in steps parallel to the axes

in the right sequence

How to define a point in the lattice in terms of miller indices
'travel' from point to origin

DIRECTIONS

How to define a given direction in terms of miller indices e.g. determine coords of 2 points lying on the direction
Subtract coords of ' $1^{\text {st' }}$ point from the ' 2 nd'
(As the crow flies)
Write indices in square

brackets without commas

$$
[010] \leftrightarrow
$$

Note: parallel directions have the same miller indices (same direction!)

MOVE ORIGIN!

DIRECTIONS

How to define a given direction in terms of miller indices e.g.
determine coords of 2 points lying on the direction
Subtract coords of ' $1^{\text {st' }}$ point from the ' 2 nd'
(As the crow flies)
Write indices in square

brackets without commas
[010]
Note: parallel directions have the same miller indices
(same direction!)

MOVE ORIGIN!

DIRECTIONS

Directions are integers
eliminate fractions by
multiplying by one factor....
to obtain lowest possible miller indices (integer)

In this case, multiply by.......

Subtract coords of ' 1 st' point
$\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$
from the '2nd'
(As the crow flies)

DIRECTIONS

How to locate a direction for a given set of miller indices
e.g. [011]
treat direction indices as point coords \longrightarrow
i.e. $[011]=0,1,1$
draw direction from origin to point

Note

Directions for given miller indices always originate from the origin

NEGATIVE DIRECTIONS

For a given (negative) direction
e.g.
determine coords of 2 points lying on the direction
Subtract coords of $1^{\text {st }}$ point from the $2^{\text {nd }}$
(as the crow flies)
Write indices in square brackets without commas

$$
[01 \overline{1}] \Leftarrow
$$

for given 'negative' miller indices

e.g. [011]

treat the indices as coords of a point

OR:
MOVE ORIGIN
0,1,-1

NEGATIVE DIRECTIONS

For a given negative direction
e.g.

Subtract coords of $1^{\text {st }}$ point from the $2^{\text {nd }}$
(as the crow flies)
Write indices in square brackets without commas

$$
[01 \overline{1}]
$$

for given 'negative' miller indices
e.g. [011]
0,1,-1

OR:

MOVE ORIGIN
treat the indices as coords of a point

DIRECTIONS OF INDICES > UNITY
pts

[120] is converted to $1 / 2,1,0$?
by dividing throughout by 2

To draw direction of miller indices > 1

Using only one cell
convert miller indices to coords (fractional coords)

$$
[10,21,0]
$$

i.e. by dividing by the highest miller index

DIRECTIONS OF INDICES > UNITY

e.g. [230]
converts to 2/3,1,0

DIRECTIONS OF INDICES > UNITY

e.g. [231]

DIRECTIONS OF INDICES > UNITY

e.g. [231]
converts to 2/3,1,1/3

DIRECTIONS OF INDICES > UNITY

How to define a given direction in terms of miller indices e.g.
determine coords of 2 points lying on the direction
Subtract coords of $1^{\text {st }}$ point from the $2^{\text {nd }}$
eliminate fractions by multiplying by one factor....

to obtain lowest possible miller indices use (4*3)
9,6,-8

Write indices in square brackets without commas

$$
\left[\begin{array}{ll}
9 & 6 \\
8
\end{array}\right]
$$

Questions?

PLANES

How to define a given plane in terms of miller indices, e.g.
determine the points at which the plane intersects the 3 axes
take reciprocal of points
4/3, 1, 2
clear fractions by
 multiplying throughout by 3
436
(clear commas)
DON'T reduce to lowest integers

$$
\begin{aligned}
& \text { ers } \\
& \text { correct Miller Indicies }
\end{aligned}
$$

PLANES

If plane is parallel to an axis intercept is ∞ reciprocal is 0
$\infty \quad 1 / 2 \infty-$
Which axes
is plane //el
to?

NOTE

(020)
miller indices of PLANES are integers with ratios
the same as the ratios of the reciprocals of the intercepts
any fractions are cleared by multiplying throughout by one factor

$$
\text { e.g. 4/3, 1, } 2 \quad(436)
$$

PLANES

If plane passes through the origin move origin
arbitrarily
coords now become
miller indices are then

(110)

PLANES

If plane doesn't hit any axes move origin so that it does
coords now become
miller indices are then
($\overline{1} \overline{1} \overline{1}$)

For a given miller indices
take reciprocal plot coords e.g. (4 3 6) ?

Plot co-ords: $1 / 4,1 / 3,1 / 6$
BUT

RECALL

How to define a given plane in terms of miller indices, e.g.
determine the points at which the plane intersects the 3 axes: $3 / 4,1,1 / 2$ take reciprocal of points

4/3, 1, 2
clear fractions by multiplying throughout by 3

For a given miller indices
take reciprocal

i.e. miller indices do not define unique planes?

for a cubic cell

ALSO Relationship between planes and directions
In a cubic unit cell
Direction is perpendicular to plane

SUMMARY OF MILLER INDICES

Points determining values
from a drawing
sian coors Right hand cartesian words ('travel')

Directions Define 2 co-ords; Subtract first one from second one Clear fractions; [uv w]

Planes
Define intercepts on the three axes

$$
\partial \text {-spacing }
$$

Take reciprocals Clear fractions;
(h kl)

SUMMARY OF MILLER INDICES

From given indices:

Points

Right hand cartesian coords ('travel')
Directions Divide throughout by highest index
Plot corresponding point connect origin to point

Planes Take reciprocals
Plot intercepts on the three axes
-Crystallographic differences between planes and directions
quantified by linear and planar atomic density, (LAD and PAD)
-analogous to APF (atomic packing factor, which was 'volume atomic density')

Linear atomic density $=\frac{\text { length of line intersected by atoms }}{\text { total line length }}$
Planar atomic density $=\frac{\text { Area of plane intersected by atoms }}{\text { total plane area }}$

Anisotropy

Table 3.3 Modulus of Elasticity Values for Several Metals at Various Crystallographic Orientations

Metal	Modulus of Elasticity (GPa)		
	[100]	[110]	[111]
Aluminum	63.7	72.6	76.1 f
Copper	66.7	130.3	191.18
Iron	125.0	210.5	$272.7 \leftarrow$
Tungsten	384.6	384.6	384.6

Source: R. W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, 3rd edition. Copyright © 1989 by John Wiley \& Sons, New York. Reprinted by permission of John Wiley \& Sons, Inc.

SINGLE CRYSTALS AND POLYCRYSTALS

-A group of one or more unit cells = a single crystal
(a grain)
-A group of more than one grain = a polycrystal

(but not termed a polygrain!)

-Under normal (i.e. industrial) circumstances, all crystalline solids are polycrystals

Liquids can be made to solidify as a single crystal (Single crystals are very important in the electronics and aerospace industries.)

