Announcements

- Room change for Tutorial B, Thursdays
 NOW Trottier 0060 Thursday
- Problems to work on and study from Callister
 - **Ch. 2:** 2.5, 2.6, 2.7, 2.9, 2.11, 2.13, **2.15**, 2.18, 2.20, 2.21, 2.22
 - Ch. 3 (1st batch): 3.1, 3.2, 3.5, 3.6, 3.7, 3.10
- Updated course syllabus on WebCT
 New TA Andreas Klinter

TODAY

- All about bonding
- Start crystal structures

BASICS OF ATOMIC BONDING WHY WOULD ATOMS BOND? HOW DO ATOMS BOND ?

BASICS OF ATOMIC BONDING WHY WOULD ATOMS BOND?

KEY CONCEPT

MINIMISATION OF 'ENERGY'

-individual atoms have energy -atoms bond as a result of lowering total energy of atoms -lowest energy state of an atom = **Ground state** -ground state achieved when all electron shells are filled* in order of increasing energy

Therefore, to bond atoms:

For most other elements:

attaining the stable electron configuration.....leads to atomic bonding

INTERIM SUMMARY

-individual atoms have energy

 -atoms bond as a result of lowering total energy
 of atoms
 of atoms
 -lowest energy state of an INDIVIDUAL atom =
 Ground state
 - lowest energy state of A GROUP OF atoms =
 stable electron configuration*

Therefore, to bond atoms:

Attain stable electron configuration....

.....by filling all the shells

Small excess of electrons metallic, o<u>r electropositive</u>

Small deficiency of electrons non-metallic or electronegative

Element B

Losing an electron.....

OR

gaining an electron.....

Leads to stable electron configuration

And bonding

	ł	ラマ	L	se	D	FD	IO	וח		T		21	F *		Go					
		1	(0-			10									6	2		2 He	
4	2.	.1	IIA											IIIA	IVA	VA	VIA	VII	-	
	3 L 1.	3 _i .0	4 Be 1.5											5 B 2.0	6 C 2.5	7 N 3.0	8 0 3.5	9 F 4 D	10 Ne -	
2	1 N 0.	1 Ia .9	12 Mg 1.2	IIIB	IVB	VB	VIB	VIIB		VIII		IB	IIB [≛]	13 Al 1.5	14 Si 1.8	15 P 2.1	16 S 2.5	1 (3.0	18 Ar _	
T	1 1 0.	9 K .8	20 Ca 1.0	21 Sc 1.3	22 Ti 1.5	23 V 1.6	24 Cr 1.6	25 Mn 1.5	26 Fe 1.8	27 Co 1.8	28 Ni 1.8	29 Cu 1.9	30 Zn 1.6	31 Ga 1.6	32 Ge 1.8	33 As 2.0	34 Se 2.4	35 Br 2.8	36 Kr –	1
	3 R 0	87 8b .8	38 Sr 1.0	39 Y 1.2	40 Zr 1.4	41 Nb 1.6	42 Mo 1.8	43 Tc 1.9	44 Ru 2.2	45 Rh 2.2	46 Pd 2.2	47 Ag 1.9	48 Cd 1.7	49 In 1.7	50 Sn 1.8	51 Sb 1.9	52 Te 2.1	58 1 2.5	54 Xe -	
	5 C 0.	55 Cs .7	56 Ba 0.9	57-71 La-Lu 1.1-1.2	72 Hf 1.3	73 Ta 1.5	74 W 1.7	75 Re 1.9	76 Os 2.2	77 Ir 2.2	78 Pt 2.2	79 Au 2.4	80 Hg 1.9	81 TI 1.8	82 Pb 1.8	83 Bi 1.9	84 Po 2.0	85 At 2 2	86 Rn –	
	8 F 0.	8 7 Fr .7	88 Ra 0.9	89-102 Ac-No 1.1-1.7		L	In	cre	asi	'ry	e	lec	etre	po	sit	-	it.		V)
										0				/			Θ		-	
														_	<u> </u>					
														-	1					
						In	cre	asi	ng		ecti	NO	eg	ati	vity	V				
									0				0		·	,				

The Periodic Table

• Columns: Similar Valence Structure

Electropositive elements: Readily give up electrons to become + ions. Electronegative elements: Readily acquire electrons to become - ions.

Forces are non-directional (or omni-directional)

i.e. nearest neighbours of +ve (-ve) ions are -ve (+ve) ions large molecules can be formed in 3D MaC CERAMICS bonded in this way $\operatorname{Al_2O_3}$

i.e. ionic bonding only when electronegativities are 'far' apart

Otherwise, electrons are shared

COVALENT BONDING electronegative elements 4 or more valence electrons

and H

H and **C** 'gain' each others electron by sharing electrons

Hydrogen now is at ground state: C needs 3 more electrons

Obtained by sharing with three more H atoms

ΉL

Covalent bonds are directional

Non-metallics (electronegatives) have this bond

(elemental or compounds)

e.g. ceramics, plastics

Many compounds have a mixture of covalent and ionic

Increasing difference in <u>electronegativity</u> = increasing ionic 'character' in compounds

Metallic bonds

All valence electrons freed up to form electron 'cloud'

All atoms share all electrons in cloud

each atom reaches lower energy state

Cloud attracts metal ions (ion 'cores')

Non-directional forces, therefore close packed

Forces can be weak or strong (melting points vary by 1000s of degrees)

RELATION BETWEEN ATOMIC BONDING AND THERMAL EXPANSION

RELATION BETWEEN ATOMIC BONDING AND THERMAL EXPANSION

Equation explanation Coulombic force between two ions

$$F_{a}(r) = \frac{\left|Z_{1}Z_{2}\right|q^{2}}{4\pi\varepsilon_{0}r^{2}}$$

q – charge on one electron

 Z_1 and Z_2 – valence (NOT atomic number in this case) Example Na bonds with Cl. Valence of Na+ is +1 and Cl- is -1.

- r interatomic separation
- ε_o permittivity of vacuum

COUALENT QUESTION

Methane is a gas because

- -all atoms are at ground state
- -coulombic forces are directional

BUT*

Methane condenses and solidifies at very low temperatures.

i.e. molecules are bonding

HOW DO THE MOLECULES BOND? Secondary Bond "Weak"

SECONDARY OR VAN DER WAALS BONDING

If there is any separation of electrons and protons:

Dipoles occur frequently

But usually obscured by primary bonds

Dipoles bond molecules (or atoms) in which all valence orbitals are filled

IMPORTANT FOR PLASTICS

DIPOLE FORMATION

Fluctuating induced dipoles

Temporary distortion of symmetrical atom due to general atomic vibrations.

dipole forms Attracts other dipoles Effect of low temperatures:

- **Slows down movement of atoms**
- increases probability of interaction

Condenses (liquefaction) inert gases: weakest bonds....

PERMANENT DIPOLE BONDS

Asymmetric molecules

SUMMARY

- Types of bonding
 - 'Strong' bonds: covalent, ionic and metallic
 - 'Weak' bonds: van der Waals and dipole (hydrogen)
- Which bond type depends on what is bonding (e.g. groups of atoms find most stable electron configuration)

WHY?

Bond Energies

		Bon	Melting			
Bonding Type	Substance	kJ/mol	eV/Atom, Ion, Molecule	Temperature (°C)		
Ionic	NaCl MgO	640 1000	3.3 5.2	801 2800		
Covalent	Si C (diamond)	450 713	4.7 7.4	1410 >3550		
Metallic	Hg Al Fe W	68 324 406 849	0.7 3.4 4.2 8.8	-39 660 1538 3410		
van der Waals	Ar Cl ₂	7.7 31	0.08 0.32	-189 -101		
Hydrogen	NH ₃ H ₂ O	35 51	0.36 0.52	-78 0		

Ionic bonds are generally the strongest. But, as you can see here, the bond energy varies: (1) from type-to-type, (2) within each bond type.