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1. The graphs shown in Figure 1 are isomorphic. To construct an isomor-
phism, recall that any isomorphism preserves the degree. This gives a
good indication as to what the map should be, as there is only one vertex
of degree 2, and 2 vertices of degree 4. Here is an explicit isomorphism:

f :


u1 7→ v1

u2 7→ v3

u3 7→ v2

u4 7→ v5

u5 7→ v4

Now check that this is indeed an isomorphism, i.e., check that for every
edge (ui, uj), (f(ui), f(uj)) is also an edge:

f :



(u1, u2) 7→ (v1, v3)
(u1, u4) 7→ (v1, v5)
(u1, u5) 7→ (v1, v4)
(u2, u3) 7→ (v3, v2)
(u2, u4) 7→ (v3, v5)
(u2, u5) 7→ (v3, v4)
(u3, u4) 7→ (v2, v5)
(u4, u5) 7→ (v5, v4)

These are all edges in the second graph, and both graphs have eight edges,
so these are precisely all the edges in the second graph. Thus f is an
isomorphism.

2. Suppose c is a cut vertex. Denote by Γ(c) the neighbours of c. Let C1

and C2 be two components that are obtained after the deletion of c. Take
some u ∈ Γ(c) ∩ C1 and v ∈ Γ(c) ∩ C2. Note that Γ(c) ∩ Ci 6= ∅ if the
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original graph was connected. Suppose there is a path, p, which connects
u and v and doesn’t go through c. Then p contains an edge (u′, v′) with
u′ ∈ C1 and v′ ∈ C2. But then after removing c, this edge will still be
present in the graph and it will connect C1 to C2. But these ought to be
disconnected, so we get a contradiction.

Conversely, suppose there are two vertices u, v ∈ G such that every path
between u and v passes through c. Let G′ be the graph obtained by
deleting all edges touching c, i.e., VG′ = VG and

EG′ = EG \ {(w, c) | w ∈ V \ {c}}.

Suppose that c is not a cut-vertex. Then G′ is connected. In particular,
there is a path, p, in G′ between u and v. But G′ ⊆ G, so p is also a
path in G between u and v. Since p was chosen in G′, it contains no
edge of the form (w, c) or (c, w), i.e., p does not pass through c. This is a
contradiction.

3. Build the graph corresponding to his situation. The vertices are disjoint
pieces of land, namely the two islands and both banks of the river. Edges
are bridges. The question then asks whether there exists an Euler tour on
this graph. We know that an euler tour exists if and only if Every vertex
has even degree. It is the case in this situation, so we’re done. See Figure
2, for an example of a path that does the job.

4. The graph in Figure 3 has no Hamiltonian path. There are three vertices
of degree one (e, f and g). Once we’ve visited any one of them, we need
to go out, in order to visit one of the others. But in order to “go out”, we
can only use the one edge that we “came in” through. So if we visit any of
these vertices, while trying to build a Hamiltonian path, we will get stuck
in the first one we visit.

5. Note: the problem asks for a circuit, i.e., we need to get back to the
starting point. Also, it is implicit that every city must be visited exactly
once.

This is a travelling salesman problem, and as we know well, there is only
one way to do it deterministically, namely compute the weight of all pos-
sible routes and then pick the one with minimal weight. So we consider
all permutations of length five on the set of cities. Note that since we are
looking at circuits, the starting point doesn’t matter, so a cyclic permu-
tation of a chosen route will yield the same total airfare. So we can fix a
starting point (say Seattle, without loss of generality) and it is enough to
consider all cycles starting at Seattle. There are 4! = 24 possible ones, but
since it doesn’t matter in which direction we travel on this circuit, going
clockwise and counterclockwise will yield the same airfare, so we only need
to consider 12 possible routes. Here they are:
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Route Weight
Seattle Phoenix New Orleans New York Boston Seattle $1175
Seattle Phoenix New Orleans Boston New York Seattle $1165
Seattle Phoenix New York New Orleans Boston Seattle $1315
Seattle Phoenix New York Boston New Orleans Seattle $1215
Seattle Phoenix Boston New Orleans New York Seattle $1355
Seattle Phoenix Boston New York New Orleans Seattle $1265
Seattle New Orleans Phoenix New York Boston Seattle $1575
Seattle New Orleans Phoenix Boston New York Seattle $1615
Seattle New Orleans New York Phoenix Boston Seattle $1765
Seattle New Orleans Boston Phoenix New York Seattle $1755
Seattle New York Phoenix New Orleans Boston Seattle $1665
Seattle New York New Orleans Phoenix Boston Seattle $1715

6. Neither of these graphs is planar. The first one is called Petersen’s graph
and is a well-known in graph theory. It is not planar because it contains
a homeomorphic copy of K3,3, with vertices as shown in Figure 4.

The second graph is not planar either. It contains no three-cycles, so if
it were, the identity |E| ≤ 2|V | − 4 would hold. But it has |E| = 14 and
|V | = 8, so we get a contradiction.

7. We are given a graph which is simple and planar and since it is bipartite,
it has no three-cycles. Then it satisfies the identity e ≤ 2v − 4.

8. Build a graph, where each station is a vertex and two stations are con-
nected by an edge if they are less than 150m apart. Vertex-colour this
graph. The number of colours needed is the number of different stations
needed. See Figure 6 for a colouring that uses three colours. This is the
best we can do because the graph contains a three-cycle. So its chromatic
number is 3, so we need three different channels.

9. (Bonus Problem)

Claim. χ(Km) =
{

m if m = 2n + 1
m− 1 if m = 2n.

Proof. It is known that ∆ ≤ χ(G) ≤ ∆ + 1, for any graph G, where ∆ is
the highest degree a vertex can have in G. So m− 1 ≤ χ(Km) ≤ m, since
Km is complete and so its highest degree is m− 1.

First, consider the odd case, m = 2n + 1. Every set of edges of the same
colour, has at most 1

2 (m− 1) edges, otherwise, there would be more than
m vertices in the graph. The total number of edges is |E| = m(m−1)

2 . So
if Km is k-coloured, we have

k
m− 1

2
≥ m(m− 1)

2
.
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Thus we get k ≥ m, and we already know k ≤ m, so for m = 2n + 1,
χ(Km) = m.

Now consider K2n. Let {v0, . . . , v2n−2, v2n−1} be its vertices. Pick a ver-
tex, say v2n−2 and delete all its incoming edges. This leaves us with a
complete graph on 2n−1 vertices. We can colour such a graph with 2n−1
colours, so that vertex vi is not touching an edge of colour i (see below for
an explicit colouring with this property). Now add back the deleted edges
(while keeping the old colouring), and colour (vi, v2n−1) with colour i. By
construction, no edge adjacent to this one will hae colour i, so this gives
a colouring on K2n with 2n− 1 colours.

Remark. We give a colouring by 2n+1 colours of K2n+1 such that every
vertex is missing a different colour. Let {v0, . . . , v2n} be the vertices of
K2n+1. Let f : E → {0, 1, . . . , 2n} be defined as follows:

f :

 (vi, vj) 7→ i + j mod 2n + 1 if i, j 6= 2n + 1
(vi, vj) 7→ 2i mod 2n + 1 if j = 2n + 1
(vi, vj) 7→ 2j mod 2n + 1 if i = 2n + 1

.

Note that f is symmetric, as expected, since (u, v) and (v, u) denote the
same edge. Now, let e1 = (vi1 , vj1) and e2 = (vi2 , vj2) be two adjacent
edges. They must have a common vertex, without loss of generality, vi1 =
vi2 = vi. It is easy to see that f(e1) 6= f(e2):

• If i = 2n, then f(e1) = 2j1 6= 2j2 = f(e2).

• If i, j1, j2 6= 2n, then f(e1) = i + j1 6= i + j2 = f(e2).

• If i 6= 2n, but j1 = 2n, then f(e1) = 2i 6= i + j2 = f(e2).

So f gives a colouring on K2n+1 in 2n + 1 colours. Note that in the
colouring we gave, for every 0 ≤ i ≤ 2n, vertex vi has no incoming edge
which is coloured with i.

Claim. χ(Kn,m) = max(n, m).

Proof. Without loss of generality n ≤ m. Let the vertices on the two sides
be {v0, . . . , vn−1} and {u0, . . . , um−1}.
Colour each edge (v0, ui) with i. In the same vein, colour edges (vj , ui)
with colour i + j mod m. In other words, we use a different cyclic per-
mutation of colours for the neighbours of each vj . Since the graph is
bipartite, this is enough, as we are assigning colours stating on one side
and we ensure that they don’t touch on the other side.
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