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1. Clearly,if A= B, AxB=AxA=BxA. Now suppose A x B =B x A.
Then for any a € A and b € B, it must be the case that (a,b) = (b, a).
This implies equality in each component, namely, a = b and b = a. Thus
for any a € A, b € B, we have a = b, so A = B.

2. Let A® B=(AUB)\ (AN B).

2)

Take any v € (A@B)® B. Then z € (A® B)UB)\ (A® B)NB),
so:

e rcADPBUB. Sovc AdpBorxeB
e x¢ A® BNB.

Suppose € B, © ¢ A® B. But then 2 ¢ AU B, so in particular,
x ¢ B, and we get a contradiction. So z ¢ B. Then it must be the
case that © € A @ B. So we have z € AUB and = ¢ B, so x € A.
This shows that (A@® B) @ B C A. It remains to show the reverse
inclusion.

Take z € A. If £ ¢ ANB, thenz € A® B and hence x € (A®B)&B.
Ifee ANB,2¢ A®B,sox ¢ (A@B)NB. Butx € AN B, soin
particular, z € B, so x € (A® B)UB. Thusz € (A® B) ® B. This
shows that A C (A® B) @ B and we’re done.

It is true in general that (A@® B) @ C = A® (B @ C). The intuition
is that symmetric difference of two sets “deletes” intersections, so it
will delete all intersections that are in an even number of sets (e.g.,
ANBNC will not be deleted). Draw a picture to convince yourselves.
Here is the actual proof:

Take x € (A® B) ® C. Then:

erxrcAdBorxe(C
ex¢(AeB)NC



IfreC,thenx ¢ (A®B),ie, z¢ AUBorz e ANB.

e Ifx € AN B, then x € ANBNC. So in particular, x € A and
also, z € BNC. Butif x € BNC, then x ¢ B® C. Thus
x € AU(B®C) (because z € A), and ¢ AN(B® C) (because
x¢BdC). Soxrec Ad (Ba ().

elfz ¢ AUB (and © ¢ AN B), then ¢ A and ¢ B. But
x € B®C,since z € C (and so z € BUC) and also, z ¢ B (so
x ¢ BNC). Now, sincex € B&C,z € AU(B®C). But © ¢ A,
sor ¢ AN(B@C(C). Thusz € Ad (Ba ).

This shows that (A®B)®&C C Ag(B& (). Similarly, A®(BaC) C
(AeB)®C.

Note that with this identity, part a) becomes trivial:

(AB)@B=A®(BeB)=Aq)=A.

3. Let f: A— B be a function, S,T C A.

a)

Suppose f(z) € f(SUT), so that x € SUT. If z € S, then f(x) €
f(S). f x € T, then f(z) € f(T). So f(x) € f(S)U f(T) and
hence f(SUT) C f(S)U f(T). Conversely, if f(z) € f(S)U f(T),
f(z) € f(S) (and so x € S), or f(x) € f(T) (and so x € T'). Thus
zeSorxeT, ie,ze SUT (and so f(z) € f(SUT)). This shows
that f(S)U f(T) C f(SUT) and we’re done.

This holds for U replaced by N. The proof is the same, with “or”
replaced by “and”.

Let x € f~1(SUT), i.e., f(x) € SUT. So f(x) € Sor f(z) € T, i.e.,
z€ fYS)orxe f7HT). Sox € fH(S)U f~H(T). Hence f~1(SU
T) C f~1(S) U f~YT). Conversely, suppose z € f~1(S)uU f~1(T).
Then x € f~1(S) (ie., f(z) € S), or x € f~YT) (i.e., f(x) € T).
So f(z) € SUT, ie., z € fTY(SUT). Hence f~1(S)U f~1T) C
fHSuUT).

Showing that f=1(S)U f~Y(T) = f~1(SUT) is similar (replace U by
N and “or” by “and”).

Let f(z) = az + b and g(z) = cx + d. Then:
(fog)(x) = f(g9(x)) = ag(z) + b= alcx +d) + b= acz + (ad +b)
and
(go f)(z) =9(f(x)) =cf(x) +d=claz+b) +d=acx+ (bc+d)
So in order to have fog = go f, we need ad + b = bc + d. We can

rewrite this as b(1 —c¢) = d(1 —a). So given any three of a,b, ¢, d € R,
we can find the fourth one so that fog=go f.



b) Let f(z) = 22 + 1. First find the inverse of f:

flx)=203+1— f(z) —1=22° - 2% = %(f(:z:) —1).

) = (5 1))5.

It is easy to check that fo f~! = id and f~' o f = id. So f is
invertible and f~! is its inverse.

Hence

5. a) Proceed by induction on n. First check the base case. For n = 1,
Eizl k3 =1 and % = 1, so the statement is true for n = 1.
Now suppose. that the statement is true for k = n, i.e., suppose that
Sh_ k=" ("'H) . We show that it is also true for k =n + 1.

n+1 n 2 2
1 1
YK = Zk3+(n+1)3—n(n4+)+(n+1)3—(n+1)2<4n2+n+1>
k=1 k=1
1 1
= 1(71—1—1)2 (n® +4n +4) :1(n+1)2(n—|—2)2.
b)
200 200
2002 ( 201) ~982(99)?
B=Y K-y k= = 3804 :
,2;9 Z Z ; 380477799

6. a) Let f:[2,4] — [1,2] be given by f(x) = 3a. Clearly, f: [1,2] — [2,4]
given by f(z) = 2z, is the inverse of f. So f is invertible and hence
a bijection.
b) Let f : R — (0,1) be given by f(x)
(0,1) — R, given by f(z) = tan(x —
bijection.

= arctanz + . Clearly, f:
%) is the inverse of f, so f is a

7. Let A,, be countable sets, i.e., for each n, A, can be enumerated as A,, =
{an; | i € N}. So we can write:

UA": U Uani: U{anl|k:Z+n}

n=1 n=1i=1 k=2
This is a countable union of finite sets, which can be enumerated as
{a/ll 9 a12) a21 ) a137 a’31 9 a/22 .. '}'
8. (Bonus Problem) Let S = {z | = ¢ z}.
e Suppose S € S. Then by definition of S, S ¢ S, so we get a contra-
diction.

e Suppose S ¢ S. But then S satisfies the condition for being an
element of S, so S € S and we get a contradiction again.



