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1. Clearly, if A = B, A×B = A×A = B×A. Now suppose A×B = B×A.
Then for any a ∈ A and b ∈ B, it must be the case that (a, b) = (b, a).
This implies equality in each component, namely, a = b and b = a. Thus
for any a ∈ A, b ∈ B, we have a = b, so A = B.

2. Let A⊕B = (A ∪B) \ (A ∩B).

a) Take any x ∈ (A⊕B)⊕B. Then x ∈ ((A⊕B)∪B) \ ((A⊕B)∩B),
so:

• x ∈ A⊕B ∪B. So x ∈ A⊕B or x ∈ B

• x /∈ A⊕B ∩B.

Suppose x ∈ B, x /∈ A ⊕ B. But then x /∈ A ∪ B, so in particular,
x /∈ B, and we get a contradiction. So x /∈ B. Then it must be the
case that x ∈ A ⊕ B. So we have x ∈ A ∪ B and x /∈ B, so x ∈ A.
This shows that (A ⊕ B) ⊕ B ⊆ A. It remains to show the reverse
inclusion.
Take x ∈ A. If x /∈ A∩B, then x ∈ A⊕B and hence x ∈ (A⊕B)⊕B.
If x ∈ A ∩B, x /∈ A⊕B, so x /∈ (A⊕B) ∩B. But x ∈ A ∩B, so in
particular, x ∈ B, so x ∈ (A⊕B) ∪B. Thus x ∈ (A⊕B)⊕B. This
shows that A ⊆ (A⊕B)⊕B and we’re done.

b) It is true in general that (A⊕B)⊕C = A⊕ (B ⊕C). The intuition
is that symmetric difference of two sets “deletes” intersections, so it
will delete all intersections that are in an even number of sets (e.g.,
A∩B∩C will not be deleted). Draw a picture to convince yourselves.
Here is the actual proof:
Take x ∈ (A⊕B)⊕ C. Then:

• x ∈ A⊕B or x ∈ C

• x /∈ (A⊕B) ∩ C
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If x ∈ C, then x /∈ (A⊕B), i.e., x /∈ A ∪B or x ∈ A ∩B.

• If x ∈ A ∩ B, then x ∈ A ∩ B ∩ C. So in particular, x ∈ A and
also, x ∈ B ∩ C. But if x ∈ B ∩ C, then x /∈ B ⊕ C. Thus
x ∈ A∪ (B⊕C) (because x ∈ A), and x /∈ A∩ (B⊕C) (because
x /∈ B ⊕ C). So x ∈ A⊕ (B ⊕ C).

• If x /∈ A ∪ B (and x /∈ A ∩ B), then x /∈ A and x /∈ B. But
x ∈ B ⊕ C, since x ∈ C (and so x ∈ B ∪ C) and also, x /∈ B (so
x /∈ B ∩C). Now, since x ∈ B⊕C, x ∈ A∪ (B⊕C). But x /∈ A,
so x /∈ A ∩ (B ⊕ C). Thus x ∈ A⊕ (B ⊕ C).

This shows that (A⊕B)⊕C ⊆ A⊕(B⊕C). Similarly, A⊕(B⊕C) ⊆
(A⊕B)⊕ C.
Note that with this identity, part a) becomes trivial:

(A⊕B)⊕B = A⊕ (B ⊕B) = A⊕ ∅ = A.

3. Let f : A → B be a function, S, T ⊆ A.

a) Suppose f(x) ∈ f(S ∪ T ), so that x ∈ S ∪ T . If x ∈ S, then f(x) ∈
f(S). If x ∈ T , then f(x) ∈ f(T ). So f(x) ∈ f(S) ∪ f(T ) and
hence f(S ∪ T ) ⊆ f(S) ∪ f(T ). Conversely, if f(x) ∈ f(S) ∪ f(T ),
f(x) ∈ f(S) (and so x ∈ S), or f(x) ∈ f(T ) (and so x ∈ T ). Thus
x ∈ S or x ∈ T , i.e., x ∈ S ∪T (and so f(x) ∈ f(S ∪T )). This shows
that f(S) ∪ f(T ) ⊆ f(S ∪ T ) and we’re done.
This holds for ∪ replaced by ∩. The proof is the same, with “or”
replaced by “and”.

b) Let x ∈ f−1(S ∪T ), i.e., f(x) ∈ S ∪T . So f(x) ∈ S or f(x) ∈ T , i.e.,
x ∈ f−1(S) or x ∈ f−1(T ). So x ∈ f−1(S)∪ f−1(T ). Hence f−1(S ∪
T ) ⊆ f−1(S) ∪ f−1(T ). Conversely, suppose x ∈ f−1(S) ∪ f−1(T ).
Then x ∈ f−1(S) (i.e., f(x) ∈ S), or x ∈ f−1(T ) (i.e., f(x) ∈ T ).
So f(x) ∈ S ∪ T , i.e., x ∈ f−1(S ∪ T ). Hence f−1(S) ∪ f−1(T ) ⊆
f−1(S ∪ T ).
Showing that f−1(S)∪ f−1(T ) = f−1(S ∪T ) is similar (replace ∪ by
∩ and “or” by “and”).

4. a) Let f(x) = ax + b and g(x) = cx + d. Then:

(f ◦ g)(x) = f(g(x)) = ag(x) + b = a(cx + d) + b = acx + (ad + b)

and

(g ◦ f)(x) = g(f(x)) = cf(x) + d = c(ax + b) + d = acx + (bc + d)

So in order to have f ◦ g = g ◦ f , we need ad + b = bc + d. We can
rewrite this as b(1−c) = d(1−a). So given any three of a, b, c, d ∈ R,
we can find the fourth one so that f ◦ g = g ◦ f .
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b) Let f(x) = 2x3 + 1. First find the inverse of f :

f(x) = 2x3 + 1 → f(x)− 1 = 2x3 → x3 =
1
2
(f(x)− 1).

Hence

f−1(x) =
(

1
2
(x− 1)

) 1
3

.

It is easy to check that f ◦ f−1 = id and f−1 ◦ f = id. So f is
invertible and f−1 is its inverse.

5. a) Proceed by induction on n. First check the base case. For n = 1,∑1
k=1 k3 = 1 and 12×22

4 = 1, so the statement is true for n = 1.
Now suppose that the statement is true for k = n, i.e., suppose that∑n

k=1 k3 = n2(n+1)2

4 . We show that it is also true for k = n + 1.

n+1∑
k=1

k3 =
n∑

k=1

k3 + (n + 1)3 =
n2(n + 1)2

4
+ (n + 1)3 = (n + 1)2

(
1
4
n2 + n + 1

)
=

1
4
(n + 1)2

(
n2 + 4n + 4

)
=

1
4
(n + 1)2(n + 2)2.

b)
200∑

k=99

k3 =
200∑
k=1

k3 −
98∑

k=1

k3 =
2002(201)2

4
− 982(99)2

4
= 380477799.

6. a) Let f : [2, 4] → [1, 2] be given by f(x) = 1
2x. Clearly, f̄ : [1, 2] → [2, 4]

given by f̄(x) = 2x, is the inverse of f . So f is invertible and hence
a bijection.

b) Let f : R → (0, 1) be given by f(x) = arctan x + π
2 . Clearly, f̄ :

(0, 1) → R, given by f̄(x) = tan(x− π
2 ) is the inverse of f , so f is a

bijection.

7. Let An be countable sets, i.e., for each n, An can be enumerated as An =
{ani | i ∈ N}. So we can write:

∞⋃
n=1

An =
∞⋃

n=1

∞⋃
i=1

ani
=

∞⋃
k=2

{ani
| k = i + n}.

This is a countable union of finite sets, which can be enumerated as
{a11 , a12 , a21 , a13 , a31 , a22 . . .}.

8. (Bonus Problem) Let S = {x | x /∈ x}.

• Suppose S ∈ S. Then by definition of S, S /∈ S, so we get a contra-
diction.

• Suppose S /∈ S. But then S satisfies the condition for being an
element of S, so S ∈ S and we get a contradiction again.
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