MATH 363
 Discrete Mathematics
 Winter 2009

Assignment 3 Solutions

1. Clearly, if $A=B, A \times B=A \times A=B \times A$. Now suppose $A \times B=B \times A$. Then for any $a \in A$ and $b \in B$, it must be the case that $(a, b)=(b, a)$. This implies equality in each component, namely, $a=b$ and $b=a$. Thus for any $a \in A, b \in B$, we have $a=b$, so $A=B$.
2. Let $A \oplus B=(A \cup B) \backslash(A \cap B)$.
a) Take any $x \in(A \oplus B) \oplus B$. Then $x \in((A \oplus B) \cup B) \backslash((A \oplus B) \cap B)$, so:

- $x \in A \oplus B \cup B$. So $x \in A \oplus B$ or $x \in B$
- $x \notin A \oplus B \cap B$.

Suppose $x \in B, x \notin A \oplus B$. But then $x \notin A \cup B$, so in particular, $x \notin B$, and we get a contradiction. So $x \notin B$. Then it must be the case that $x \in A \oplus B$. So we have $x \in A \cup B$ and $x \notin B$, so $x \in A$. This shows that $(A \oplus B) \oplus B \subseteq A$. It remains to show the reverse inclusion.
Take $x \in A$. If $x \notin A \cap B$, then $x \in A \oplus B$ and hence $x \in(A \oplus B) \oplus B$. If $x \in A \cap B, x \notin A \oplus B$, so $x \notin(A \oplus B) \cap B$. But $x \in A \cap B$, so in particular, $x \in B$, so $x \in(A \oplus B) \cup B$. Thus $x \in(A \oplus B) \oplus B$. This shows that $A \subseteq(A \oplus B) \oplus B$ and we're done.
b) It is true in general that $(A \oplus B) \oplus C=A \oplus(B \oplus C)$. The intuition is that symmetric difference of two sets "deletes" intersections, so it will delete all intersections that are in an even number of sets (e.g., $A \cap B \cap C$ will not be deleted). Draw a picture to convince yourselves. Here is the actual proof:
Take $x \in(A \oplus B) \oplus C$. Then:

- $x \in A \oplus B$ or $x \in C$
- $x \notin(A \oplus B) \cap C$

If $x \in C$, then $x \notin(A \oplus B)$, i.e., $x \notin A \cup B$ or $x \in A \cap B$.

- If $x \in A \cap B$, then $x \in A \cap B \cap C$. So in particular, $x \in A$ and also, $x \in B \cap C$. But if $x \in B \cap C$, then $x \notin B \oplus C$. Thus $x \in A \cup(B \oplus C)$ (because $x \in A)$, and $x \notin A \cap(B \oplus C)$ (because $x \notin B \oplus C)$. So $x \in A \oplus(B \oplus C)$.
- If $x \notin A \cup B$ (and $x \notin A \cap B)$, then $x \notin A$ and $x \notin B$. But $x \in B \oplus C$, since $x \in C$ (and so $x \in B \cup C$) and also, $x \notin B$ (so $x \notin B \cap C)$. Now, since $x \in B \oplus C, x \in A \cup(B \oplus C)$. But $x \notin A$, so $x \notin A \cap(B \oplus C)$. Thus $x \in A \oplus(B \oplus C)$.
This shows that $(A \oplus B) \oplus C \subseteq A \oplus(B \oplus C)$. Similarly, $A \oplus(B \oplus C) \subseteq$ $(A \oplus B) \oplus C$.
Note that with this identity, part a) becomes trivial:

$$
(A \oplus B) \oplus B=A \oplus(B \oplus B)=A \oplus \emptyset=A
$$

3. Let $f: A \rightarrow B$ be a function, $S, T \subseteq A$.
a) Suppose $f(x) \in f(S \cup T)$, so that $x \in S \cup T$. If $x \in S$, then $f(x) \in$ $f(S)$. If $x \in T$, then $f(x) \in f(T)$. So $f(x) \in f(S) \cup f(T)$ and hence $f(S \cup T) \subseteq f(S) \cup f(T)$. Conversely, if $f(x) \in f(S) \cup f(T)$, $f(x) \in f(S)$ (and so $x \in S$), or $f(x) \in f(T)$ (and so $x \in T$). Thus $x \in S$ or $x \in T$, i.e., $x \in S \cup T$ (and so $f(x) \in f(S \cup T)$). This shows that $f(S) \cup f(T) \subseteq f(S \cup T)$ and we're done.
This holds for \cup replaced by \cap. The proof is the same, with "or" replaced by "and".
b) Let $x \in f^{-1}(S \cup T)$, i.e., $f(x) \in S \cup T$. So $f(x) \in S$ or $f(x) \in T$, i.e., $x \in f^{-1}(S)$ or $x \in f^{-1}(T)$. So $x \in f^{-1}(S) \cup f^{-1}(T)$. Hence $f^{-1}(S \cup$ $T) \subseteq f^{-1}(S) \cup f^{-1}(T)$. Conversely, suppose $x \in f^{-1}(S) \cup f^{-1}(T)$. Then $x \in f^{-1}(S)$ (i.e., $f(x) \in S$), or $x \in f^{-1}(T)$ (i.e., $f(x) \in T$). So $f(x) \in S \cup T$, i.e., $x \in f^{-1}(S \cup T)$. Hence $f^{-1}(S) \cup f^{-1}(T) \subseteq$ $f^{-1}(S \cup T)$.
Showing that $f^{-1}(S) \cup f^{-1}(T)=f^{-1}(S \cup T)$ is similar (replace \cup by \cap and "or" by "and").
4. a) Let $f(x)=a x+b$ and $g(x)=c x+d$. Then:

$$
(f \circ g)(x)=f(g(x))=a g(x)+b=a(c x+d)+b=a c x+(a d+b)
$$

and

$$
(g \circ f)(x)=g(f(x))=c f(x)+d=c(a x+b)+d=a c x+(b c+d)
$$

So in order to have $f \circ g=g \circ f$, we need $a d+b=b c+d$. We can rewrite this as $b(1-c)=d(1-a)$. So given any three of $a, b, c, d \in \mathbb{R}$, we can find the fourth one so that $f \circ g=g \circ f$.
b) Let $f(x)=2 x^{3}+1$. First find the inverse of f :

$$
f(x)=2 x^{3}+1 \rightarrow f(x)-1=2 x^{3} \rightarrow x^{3}=\frac{1}{2}(f(x)-1) .
$$

Hence

$$
f^{-1}(x)=\left(\frac{1}{2}(x-1)\right)^{\frac{1}{3}} .
$$

It is easy to check that $f \circ f^{-1}=i d$ and $f^{-1} \circ f=i d$. So f is invertible and f^{-1} is its inverse.
5. a) Proceed by induction on n. First check the base case. For $n=1$, $\sum_{k=1}^{1} k^{3}=1$ and $\frac{1^{2} \times 2^{2}}{4}=1$, so the statement is true for $n=1$. Now suppose that the statement is true for $k=n$, i.e., suppose that $\sum_{k=1}^{n} k^{3}=\frac{n^{2}(n+1)^{2}}{4}$. We show that it is also true for $k=n+1$.

$$
\begin{aligned}
\sum_{k=1}^{n+1} k^{3} & =\sum_{k=1}^{n} k^{3}+(n+1)^{3}=\frac{n^{2}(n+1)^{2}}{4}+(n+1)^{3}=(n+1)^{2}\left(\frac{1}{4} n^{2}+n+1\right) \\
& =\frac{1}{4}(n+1)^{2}\left(n^{2}+4 n+4\right)=\frac{1}{4}(n+1)^{2}(n+2)^{2} .
\end{aligned}
$$

b)

$$
\sum_{k=99}^{200} k^{3}=\sum_{k=1}^{200} k^{3}-\sum_{k=1}^{98} k^{3}=\frac{200^{2}(201)^{2}}{4}-\frac{98^{2}(99)^{2}}{4}=380477799 .
$$

6. a) Let $f:[2,4] \rightarrow[1,2]$ be given by $f(x)=\frac{1}{2} x$. Clearly, $\bar{f}:[1,2] \rightarrow[2,4]$ given by $\bar{f}(x)=2 x$, is the inverse of f. So f is invertible and hence a bijection.
b) Let $f: \mathbb{R} \rightarrow(0,1)$ be given by $f(x)=\arctan x+\frac{\pi}{2}$. Clearly, \bar{f} : $(0,1) \rightarrow \mathbb{R}$, given by $\bar{f}(x)=\tan \left(x-\frac{\pi}{2}\right)$ is the inverse of f, so f is a bijection.
7. Let A_{n} be countable sets, i.e., for each n, A_{n} can be enumerated as $A_{n}=$ $\left\{a_{n_{i}} \mid i \in \mathbb{N}\right\}$. So we can write:

$$
\bigcup_{n=1}^{\infty} A_{n}=\bigcup_{n=1}^{\infty} \bigcup_{i=1}^{\infty} a_{n_{i}}=\bigcup_{k=2}^{\infty}\left\{a_{n_{i}} \mid k=i+n\right\} .
$$

This is a countable union of finite sets, which can be enumerated as $\left\{a_{1_{1}}, a_{1_{2}}, a_{2_{1}}, a_{1_{3}}, a_{3_{1}}, a_{2_{2}} \ldots\right\}$.
8. (Bonus Problem) Let $S=\{x \mid x \notin x\}$.

- Suppose $S \in S$. Then by definition of $S, S \notin S$, so we get a contradiction.
- Suppose $S \notin S$. But then S satisfies the condition for being an element of S, so $S \in S$ and we get a contradiction again.

