MATH 363
 Discrete Mathematics
 Winter 2009

Midterm
 Solutions

1. Recall that $x \rightarrow y$ is equivalent to $\neg x \vee y$.
a)

$$
\begin{aligned}
(\neg p \wedge(p \rightarrow q)) \rightarrow \neg p & \Leftrightarrow \neg(\neg p \wedge(\neg p \vee q)) \vee \neg p \Leftrightarrow(p \vee \neg(\neg p \vee q)) \vee \neg p \\
& \Leftrightarrow(p \vee(p \wedge \neg q)) \vee \neg p \quad \Leftrightarrow(p \wedge(p \vee \neg q)) \vee \neg p \\
& \Leftrightarrow(p \vee \neg p) \wedge(p \vee \neg q \vee \neg p) \\
& \Leftrightarrow \text { true. }
\end{aligned}
$$

So the original formula is a tautology.
b) Denote

- $\varphi(p, q, r)=(p \wedge q \rightarrow r)$
- $\psi(p, q, r)=(p \rightarrow r) \wedge(q \rightarrow r)$.

If the two formulas were equivalent, then they would be so for any assignment of truth values to (p, q, r). Check that for $(p, q, r)=$ (false, true, false), $\varphi \neq \psi$:

$$
\begin{gathered}
\varphi(F, T, T)=(F \rightarrow F)=T \\
\psi(F, T, T)=(F \rightarrow F) \wedge(T \rightarrow F)=F .
\end{gathered}
$$

Note that 'False' implies anything. So $\varphi \neq \psi$, as desired.
2. If there were a duck with a lace collar in the village, it would have to be branded " B ". If it is branded " B ", it belongs to Mrs. Bond. But she has no grey ducks in the village. So if a duck had a lace collar it would not be grey. So there are no grey ducks in the village.
3. We proceed by induction. Let $f(n)=1 \cdot 2+\ldots+n(n+1)$

- For $n=1, \frac{1}{3} n(n+1)(n+2)=\frac{1}{3} 1 \cdot 2 \cdot 3=2=f(1)$.
- Suppose for $\mathrm{n}=\mathrm{k}$,

$$
f(k)=1 \cdot 2+\ldots+k(k+1)=\frac{k(k+1)(k+2)}{3}
$$

- Show that the above identity also holds for $n=k+1$.

$$
\begin{aligned}
f(k+1) & =1 \cdot 2+\ldots+k(k+1)+(k+1)(k+2)=\frac{k(k+1)(k+2)}{3}+(k+1)(k+2) \\
& =(k+1)\left(\frac{k(k+2)}{3}+k+2\right)=(k+1)\left(\frac{k^{2}+2 k+3 k+3}{3}\right) \\
& =\frac{1}{3}(k+1)\left(k^{2}+5 k+3\right)=\frac{1}{3}(k+1)(k+2)(k+3)
\end{aligned}
$$

4. Let $x \in(A \backslash B) \backslash C$. Then $x \in(A \backslash B)$ and $x \notin C$. So $x \in A$ and $x \notin B$ and $x \notin C$. Using this we get:

- $x \in A$ and $x \notin C$, so $x \in A \backslash C$;
- $x \notin B$, so $x \notin B \backslash C$.

Thus, $(A \backslash B) \backslash C \subseteq(A \backslash C) \backslash(B \backslash C)$. Conversely, suppose $x \in(A \backslash C) \backslash$ $(B \backslash C)$. Then $x \in A \backslash C$ and $x \notin B \backslash C$

- $x \in A \backslash C$, so $x \in A$ and $x \notin C$
- $x \notin B \backslash C$, so $x \notin B$ or $x \in C$. Since we already know that $x \notin C$, it must be the case that $x \notin B$.

Thus, $x \in A$ and $x \notin B$ and $x \notin C$, which gives $x \in(A \backslash B) \backslash C$. Hence $(A \backslash C) \backslash(B \backslash C) \subseteq(A \backslash B) \backslash C$.
Note. $x \notin B \backslash C$ is equivalent to $\neg(x \in B \backslash C)$, which in turn is equivalent to $\neg((x \in B) \wedge(x \notin C))$. This, by De Morgan's laws is equivalent to $(\neg(x \in B) \vee \neg(x \notin C))$. Finally this gives $(x \notin B) \vee(x \in C)$. The key point is that the negation changes the 'and' into an 'or'.
5. - $f(x)=x^{5}+1$ is a bijection because it has an inverse, $\bar{f}(x)=(x-1)^{1 / 5}$.

- $g(x)=\frac{x^{2}+1}{x^{2}+2}$ is not a bijection on \mathbb{R} for many reasons. It is not injective (one-to-one), and it is not surjective (onto). Indeed,

$$
g(-x)=\frac{(-x)^{2}+1}{(-x)^{2}+2}=\frac{x^{2}+1}{x^{2}+2}=g(x)
$$

So $g(x)=g(-x)$, so g is not injective. Also notice that for all $x \in \mathbb{R}$, $x^{2}+2>x^{2}+1$, so $0<g(x)<1$, so g is very much not surjective, either.
6. Let $X=\left\{x \mid a x^{2}+b x+c=0, a, b, c \in \mathbb{Z}\right\}$. We all know and love the formula $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2}$. It gives solutions when they exist, but in particular, it tells us that for any triple of integers (a, b, c), there are at most two solutions to the quadratic equation $a x^{2}+b x+c$. There are countably many such triples (There are $|\mathbb{Z}|$ of each component, so there are $3|\mathbb{Z}|$ triples, but $3|\mathbb{Z}|=\mathbb{Z})$. So $|X| \leq 2 \mathbb{Z}=\mathbb{Z}$. Since \mathbb{Z} is countable, X is a countable set.

