McGILL UNIVERSITY

FACULTY OF ENGINEERING

FINAL EXAMINATION

MATH 265

Advanced Calculus

Examiner: Professor A. Humphries

Associate Examiner: Professor W. Jonsson

Date: Tuesday, April 15, 2003 Time: 9:00 A.M. - 12:00 P.M.

INSTRUCTIONS

Attempt all questions. Calculators are not permitted. Questions are not necessarily of equal value.

This exam comprises the cover and 1 page of 6 questions.

1. Is it possible to solve the system

$$xy^2 + xu + yv^2 = 3$$

$$u^3y + 2xv - u^2v^2 = 2,$$

for (u, v) as functions of (x, y) near (x, y, u, v) = (1, 1, 1, 1)? If so compute the determinant of the Jacobian $\partial(u, v)/\partial(x, y)$ at this point.

- 2. Assume that a and b are fixed positive numbers. Find the extreme values of x + y subject to the constraint $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- 3. (a) Determine whether the vector field

$$\mathbf{F} = \sin yz\mathbf{i} + (xz\cos yz + \exp z)\mathbf{j} + (xy\cos yz + y\exp z)\mathbf{k}$$

is conservative. If **F** is conservative find a scalar field φ such that **F** = $\nabla \varphi$. Evaluate $\int_{\gamma} \mathbf{F} \cdot d\mathbf{r}$ where γ is the curve starting from (0,0,0) and ending at (1,1,1) satisfying $x^4 = y^2 = z$.

(b) Do the same in the case where

$$\mathbf{F} = xyz\mathbf{i} + y^2\mathbf{j} + x^2z\mathbf{k}.$$

4. (a) The coordinates (\bar{x}, \bar{y}) of the centroid of a plane region D are given by

$$\ddot{x} = \frac{1}{A} \iint_D x \, dx dy, \qquad \ddot{y} = \frac{1}{A} \iint_D y \, dx dy,$$

where A is the area of D. Use Green's Theorem to obtain the equivalent formulae

$$\bar{x} = \frac{1}{2A} \int_{\partial D} x^2 dy, \qquad \bar{y} = -\frac{1}{2A} \int_{\partial D} y^2 dx.$$

(b) Use the above to find the centroid of the semicircular region D whose boundary comprises the semi-circular arc given by

$$x = a\cos t$$
, $y = a\sin t$, $t \in [-\pi/2, \pi/2]$,

and the piece of the y-axis between -a and a.

5. Show that

$$\nabla \cdot (\varphi \mathbf{F}) = \varphi \nabla \cdot \mathbf{F} + \nabla \varphi \cdot \mathbf{F}.$$

Show that if $\varphi = f(|\mathbf{r}|)$ then $\nabla \varphi = f'(|\mathbf{r}|)\hat{\mathbf{r}}$ (where $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$, and $\hat{\mathbf{r}}$ is the unit vector in the direction of \mathbf{r}).

Find $\nabla \cdot (|\mathbf{r}|^k \mathbf{r})$ where k is a constant.

- 6. (a) Evaluate $\iint_{\Sigma} \nabla \times \mathbf{F} \cdot \mathbf{n} dS$ where $\mathbf{F} = y\mathbf{i} + x\mathbf{j} + xyz\mathbf{k}$, and Σ is that part of the sphere $x^2 + y^2 + z^2 = 1$ such that $z \leq 1/\sqrt{2}$ and \mathbf{n} is the outward pointing normal.
 - (b) Find the flux of the vector field $\mathbf{F} = xyz\mathbf{i} + y^2\mathbf{j} + x^2z\mathbf{k}$ out of the cube $0 \le x, y, z \le 1$.
 - (c) Find the flux of the vector field $\mathbf{F} = \nabla \left(\frac{1}{\sqrt{x^2 + (y-1)^2 + z^2}} \right)$ out of the sphere centered at (0,0,0) with radius 2.

[Note that you may assume Gauss' Law provided you verify the hypotheses which allow it to be derived from the Divergence Theorem.]