McGILL UNIVERSITY

FACULTY OF ENGINEERING

FINAL EXAMINATION

MATH 265

ADVANCED CALCULUS

Examiner: Professor A.R. Humphries Date: December 7, 2003 Associate Examiner: Professor W. Jonsson Time: 9:00 A.M. - 12:00 P.M. hours

INSTRUCTIONS

Calculators are not permitted.
Answer in exam booklets.
This is a closed book exam.
Dictionaries are permitted.

W. Jan

This exam comprises the cover and 2 pages of 7 questions.

ADVANCED CALCULUS MATII 265 Dec. 8, 2003

1. The following equations define y and v implicitly as functions of x and u near (x, y, u, v) = (1, -1, -1, 1)

$$xy + yu^{2} + u^{2}v + x^{2}v = 0$$
$$x + y^{2} + u + v^{2} = 2$$

At this choice of values of the variables, compute $\frac{\partial y}{\partial x}$ and $\frac{\partial v}{\partial y}$.

2. With the aid of differentiation under the integral sign show that the if x(t) satisfies the following integral equation,

$$x(t) + \int_0^t \sin(t - \tau)x(\tau)d\tau = \cos 2t$$

Then it also satisfies the ordinary differential equation

$$x'' + x = -3\cos 2t$$
 with initial conditions $x(0) = 1$ $x'(0) = 0$

3. With the aid of Lagrange Multipliers, find the shortest distance from the origin to a point on the curve of intersection of the surfaces

$$xy + z^2 = 0$$
 and $x^2 + y^2 = 1$

- 4. Let \mathcal{C} be the circle in the xy-plane of radius a=2 centered at (x,y)=(-1,3)
 - (a) Compute the line integral

$$\oint_{\mathcal{C}} \frac{-(y-3)dx}{(x+1)^2 + (y-3)^2} + \frac{(x+1)dy}{(x+1)^2 + (y-3)^2}$$

where C is traversed in the positive direction.

(b) Evaluate the following line integrals (Green's Theorem may be useful).
i.

$$\oint_{\Gamma} \frac{-(y-3)dx}{(x+1)^2 + (y-3)^2} + \frac{(x+1)dy}{(x+1)^2 + (y-3)^2}$$

Where Γ is the boundary of the square $|x| \leq 2$, $|y| \leq 4$ ii.

$$\oint_{\Gamma} \frac{-(y-3)dx}{(x+1)^2 + (y-3)^2} + \frac{(x+1)dy}{(x+1)^2 + (y-3)^2}$$

Where Γ is the circumference of the circle of radius a=1 centered at the origin.

5. Consider the region \mathcal{D} in the u-v plane bounded by the circle $u^2+v^2=1$ where the positive direction around this circle defines the positive direction around the boundary of the surface \mathcal{S} in \mathcal{R}^3 defined parametrically by

$$\mathbf{r}(u,v) = (u+v)\mathbf{i} + (u^2+v^2)\mathbf{j} + uv\mathbf{k} \text{ for } (u,v) \in \mathcal{D}$$

For the vector field $\mathbf{F} = (yz+x)\mathbf{i} + (xz+y)\mathbf{j} + (xy+z)\mathbf{k}$, evaluate $\int_{\partial S} \mathbf{F} \cdot d\mathbf{r}$ where ∂S , the boundary of S, is traversed in the positive direction.

- 6. Let $\rho^2 = x^2 + y^2 + z^2$
 - (a) Calculate $\nabla \frac{1}{\rho}$ for $\rho \neq 0$.
 - (b) Show that, if $\rho \neq 0$, then $\nabla \cdot \nabla \frac{1}{\rho} = 0$.
 - (c) For the vector field $\mathbf{F} = -\nabla \frac{1}{\rho}$ and the surface S of the sphere of radius a > 0. $x^2 + v^2 + z^2 = a^2$, show that

$$\int \int_{S} \mathbf{F} \cdot \mathbf{n} dS = 4\pi$$

- 7. Let $\mathbf{F} = (y^2 + 2xz, z^2 + 2xy, x^2 + 2yz)$.
 - (a) Compute $\nabla \times \mathbf{F}$.
 - (b) Is **F** conservative? If yes, then find a corresponding potential.
 - (c) Compute $\int_C \mathbf{F} \cdot d\mathbf{r}$ where C is the curve $\mathbf{r} = t\mathbf{i} + t^2\mathbf{j} + t^3\mathbf{k}$ for $0 \le t \le 1$.