
MATHEMATICS 264 Fall 2006

SOLUTIONS

(1) With the aid of a change of variables, compute the value of the integral
∫∫

(D)

(
1
y2

)
dA

region (D) in the first quadrant of the x, y plane bounded by the curves

x2 + y2 = 1, x2 + y2 = 4, x = 2y, x = 4y

SOLUTIONS: Let x = r cos θ, y = r sin θ. Then,

(D) : r = 1 → 2; θ = θ1 → θ2,

where θ2 = arctan(1/2), θ1 = arctan(1/4).
∫∫

(D)

(
1
y2

)
dA =

∫∫

(D)

(
1

r2 sin2 θ

)
rdrdθ = ln r

∣∣∣
2

1
(− cot θ)

∣∣∣
θ2

θ1

= − ln 2(tan θ)−1
∣∣∣
θ2

θ1

= ln 4.

(2) Find the area of that portion of the surface z2 = x2 + y2 above the first quadrant of the (x, y)-plane for

which x ≤ 1 and y ≤ 2.

SOLUTIONS: The projection of (S) on xy plane is (A) : (0 ≤ x ≤ 1; 0 ≤ y ≤ 2).

Area =
∫∫

(S)

dS =
∫∫

(A)

√
1 + z2

x + z2
ydxdy =

∫∫

(A)

√
2 dxdy = 2

√
2.

(3) Compute the line integral ∮

C

2ydy − ydx

where C is the boundary of the half disc x2 + y2 ≤ 1 with y ≥ 0 traversed in the positive sense

(a) by parameterizing the boundary curve (there are two pieces, a straight line segment and a semi-

circle) and then evaluating the integral directly.

(b) by applying Green’s Theorem, then evaluating the resulting double integral.

SOLUTIONS:

• Let (C) = (C)1
⋃

(C)2, where (C)1: −1 ≤ x ≤ 1; y = 0; (C)2:

x = cos θ; y = sin θ; (0 ≤ θ ≤ π).

Thus, ∫

(C)1

= 0.

On the other hand, along (C)2, we have

d~r = (− sin θ~i + cos θ~j)dθ,

and
~F = F1

~i + F2
~j, F1 = −y, F2 = 2y.
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Hence ∫

(C2

~F · d~r =
∫ π

0

(2 sin θ cos θ + sin2 θ)dθ =
π

2
.

• On the other hand, by Green’s theorem, we have
∫∫

(A)

(
∂F2

∂x
− ∂F1

∂y

)
dxdy =

∫∫

(A)

(1)dxdy =
π

2
.

(4) (a) State Gauss’ theorem.

(b) Let (V ) be the region inside the paraboloid z = 4 − x2 − y2, in the first octant (i.e. x, y, and z

are all non-negative) and (S) its boundary. Furthermore, let F be the vector valued function

F = yzi + xyj + k.

Verify Gauss’ theorem for this function and the region (V ) by

(i) evaluating the appropriate surface integral.

(ii) by evaluating the appropriate volume integral,

and showing that both have the same value.

SOLUTIONS:

• Gauss’s Theorem: ∫∫∫

(V )

div ~FdV =
∫∫

(S)

~F · ~ndS

where (S) is closed simple connected surface; (V ) is the enclosed volume; ~F is differentiable vector

field; ~n is outward unit normal vector of the surface.

• Let (S) = (S)1
⋃

(S)2
⋃

(S)2
⋃

(S)4. We have that

On (S)1 on yoz plane: ~n = (−1, 0, 0), x = 0,
∫

(S)1

~F · ~ndydz = −
∫ 2

0

dy

∫ 4−y2

0

yzdz = −64
12

.

On (S)2 on xoz plane: ~n = (0,−1, 0), y = 0,
∫

(S)2

~F · ~ndxdz =
∫

(S)2

xydxdz = 0.

On (S)3 on xoy plane: ~n = (0, 0,−1), z = 0,
∫

(S)3

~F · ~ndxdz =
∫

(S)3

(−1)dxdy = −π.

The side (S)4 on the surface z = 4− x2 − y2: ~r = x~i + y~j + (4− x2 − y2)~k,

~rx × ~ry = (2x, 2y, 1),

So that,
∫

(S)4

~F · ~ndS =
∫

(S)3

(yz, xy, 1) · (2x, 2y, 1)dxdy

=
∫ 2

0

dy

∫ √
4−y2

0

(8xy − 2x3y − 2xy3 + 2xy2 + 1)dx =
64
12

+
64
15

+ π.

Therefore is is derived that ∫∫

(S)

~F · ~ndS =
64
15

.
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• Note that

div ~F = x.

With cylindrical system, we have
∫∫∫

(V )

div ~FdV =
∫ π/2

0

∫ 2

0

∫ √
4−r2

0

r cos θdz =
64
15

.

(5) Consider the domain in the (u, v) plane bounded by the circle u2 + v2 = 1 and the surface (S) in R3

defined perimetrically by

r(u, v) = (u2 + v2)i + uvj + (u + v)k

where the positive sense around the boundary is determined by the positive sense around the boundary

of the region in the (u, v) plane.

Furthermore, set F = yzi + xzj + xyk.

(a) Compute ∫∫

(S)

∇× F · ndS,

where (S) is the surface described above.

(b) To verify Stokes’ Theorem, now compute
∮

C

F · dr.

SOLUTIONS:

• One derives

∇× ~F = (0, 0, 0).

Hence, ∫∫

(S)

∇× ~F · ndS = 0.

• On the other hand, The boundary (γ) of the surface (S) mapping to the (u, v) plane can be

expressed in the form:

u = cos θ, v = sin θ.

On the closed boundary

x = u2 + v2 = 1, y = uv = cos θ sin θ =
1
2

sin 2θ, z = u + v = cos θ + sin θ.

Hence,along the boundary,

d~r = dx~i + dy~j + dz~k

=
[
cos 2θ~j + (− sin θ + cos θ)~k

]
dθ

and
~F =

1
2

sin 2θ(cos θ + sin θ)~i +
1
2

sin 2θ~j + ~k

~F · d~r = (
1
4

sin 4θ + cos θ − sin θ)dθ

We get ∮
~F · d~r =

∫ 2π

0

(
1
4

sin 4θ + cos θ − sin θ)dθ = 0.

The Stokes Theorem is verified.
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(6) Solve the following problems by the method of separation of variables:

(a)
∂u

∂x
= 2

∂u

∂y
+ u, u(x, 0) = 3e−5x + 2e−3x.

(b)
∂u

∂t
= 2

∂2u

∂x2
− 2u, u(0, t) = 0, u(3, t) = 0, u(x, 0) = 2 sinπx− sin 4πx.

(7) Use Fourier series to solve the following heat conduction equation:

∂u

∂t
=

∂2u

∂x2
, ux(0, t) = 0, uπ(π, t) = 0, u(x, 0) = 25x.


