MATHEMATICS 264 Fall 2006
SOLUTIONS

(1) With the aid of a change of variables, compute the value of the integral
1
I, ()
(D) \Y
region (D) in the first quadrant of the x,y plane bounded by the curves

x2+y2:1,x2+y2:4,$:2y,m=4y

SOLUTIONS: Let x =rcosf,y = rsinf. Then,
(D):r=1-—2;0 =01 — 0s,

where 0 = arctan(1/2),6; = arctan(1/4).
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(2) Find the area of that portion of the surface z? = 22 + y? above the first quadrant of the (x,y)-plane for
which x <1 and y < 2.

SOLUTIONS: The projection of (S) on ay plane is (4) : (0 <z < 1;0 <y < 2).

Area:// dS:// ,/1+z§+z2dxdy=/ V2 dzdy = 2v/2.
() (4) ! (4)

(3) Compute the line integral
]{ 2ydy — ydx
c
where C is the boundary of the half disc z2 + 2 < 1 with y > 0 traversed in the positive sense
(a) by parameterizing the boundary curve (there are two pieces, a straight line segment and a semi-

circle) and then evaluating the integral directly.

(b) by applying Green’s Theorem, then evaluating the resulting double integral.

SOLUTIONS:
e Let (C) = (C)1U(C)a, where (C)1: =1 <z <1,y =0; (C)a:

x=cosb;y=sinf; (0<6<m).

/ 0,
(O

On the other hand, along (C')2, we have

Thus,

A7 = (— sin 07 + cos 07)d6,

and

F = Fi+ Fyj, Fy=—y, Fy =2y.
1



Hence

/ ﬁ~dF:/ (2sin¢9€os€+sin29)d9:z.
(Cs 0 2

e On the other hand, by Green’s theorem, we have
F: F}
I, (G =)= [ rasas =
ox (A)

(4) (a) State Gauss’ theorem.
(b) Let (V) be the region inside the paraboloid z = 4 — 22 — 4?2, in the first octant (i.e. z,y, and z
are all non-negative) and (S) its boundary. Furthermore, let F be the vector valued function
F =yzi+2yj + k.
Verify Gauss’ theorem for this function and the region (V') by
(i) evaluating the appropriate surface integral.
(ii) by evaluating the appropriate volume integral,

and showing that both have the same value.

SOLUTIONS:

e Gauss’s Theorem:

/// divﬁdvz/ F.idS
V) (s)

where (S) is closed simple connected surface; (V) is the enclosed volume; F is differentiable vector

field; 77 is outward unit normal vector of the surface.
e Let (S) = (9)1U(S)2J(S)2U(S)s. We have that
On ()1 on yoz plane: @ = (—1,0,0),z =0,

4— y 4
/ F. ndydz = / dy/ yzdz = 76—.
(S)

On (S)2 on zoz plane: @ = (0,—1,0),y =0,

/ F - fidazdz = / zydaxdz = 0.
(8)2 (8)2

On (S)3 on zoy plane: 7 = (0,0,—1),z =0,

/ F-fdedz = / (=1)dady = —.
(8)s (8)s

-

The side (S)4 on the surface z = 4 — 22 — y2: 7= 27 + yj + (4 — 22 — )k,
Tz X Fy = (2z,2y, 1);
So that,

/ F.itdS = (yz,xy,1) - (22, 2y, 1)dzdy
(8)a (8)s

o 4 64
:/ dy/ (8xy—2x3y—2xy3+2xy2+1)d g+g+
0 0
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Therefore is is derived that



e Note that
divF = x.

With cylindrical system, we have

o T/2 p2 412 64
/// dideV:/ / / rcosfdz = —.
V) 0 o Jo 15

(5) Consider the domain in the (u,v) plane bounded by the circle u?> + v? = 1 and the surface (9) in R3
defined perimetrically by

r(u,v) = (v + vH)i+wj+ (u+v)k

where the positive sense around the boundary is determined by the positive sense around the boundary
of the region in the (u,v) plane.

Furthermore, set F = yzi 4+ x2j + zyk.

/ V x F - ndS,
()

where (5) is the surface described above.

(a) Compute

(b) To verify Stokes’ Theorem, now compute

j{F~dr.
c

SOLUTIONS:
e One derives
V x F =(0,0,0).
Hence,

/’ V x F-ndS = 0.
(S)

e On the other hand, The boundary (v) of the surface (S) mapping to the (u,v) plane can be
expressed in the form:

u=-cosf, v =sinf.
On the closed boundary
r=u?4+1v*=1, y=uv=cosfhsinf = %sinQG, z=u-+v=cosf +sinb.
Hence,along the boundary,

A7 = dai + dyj + dzk
= [ c0os 265 + (—sin6 + cos0)k|do

and
L1 1 ..
F = 5511129(0089 +sin )i + isin29j +k
~ 1
F.-drF = (Z sin 46 + cos 6 — sin #)dé
We get
. 2m 1
fF-dF:/ (Zsin40+cos0—sin9)d0:().
0

The Stokes Theorem is verified.



(6) Solve the following problems by the method of separation of variables:

@ 0 0
u u
-9 — —5x 9 731:.
Ep ay +u, u(z,0)=23e"""+2e

(b)
ou 0%y

i 2@ —2u, u(0,t) =0,u(3,t) =0, u(x,0) =2sinwz — sindrz.

(7) Use Fourier series to solve the following heat conduction equation:
ou  O%u

E - @a ux(07t) = 07”71'(7T7t) = Oa ’LL(ZE,O) = 25‘:6



