This the assignment is on PDE and Fourier series. Please copy the question by hand; write out a full solution, and hand in the section of class that you registered.
(1) Find the steady state solution for the heat equation:

$$
u_{t}-2 u_{x x}=x^{2}+1, \quad(0<x<1, t>0)
$$

with the BC's:

$$
u(0, t)+u^{\prime}(0, t)=1, \quad u(1, t)=0, \quad(t \geq 0)
$$

(2) (a) Find fourier series for the function

$$
f(x)=|\sin x|, \quad|x|<\pi
$$

(b) Find Fourier cosine and Fourier sine series for the following function and sketch the Fourier series and compare function to its Fourier series:

$$
f_{0}(x)=x, \quad 0<x<\pi
$$

(c) Compute the Fourier cosine series for the function $g(x)=x-x^{2} / 2$ define on $0<x<1$, and show that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{1}{6} \pi^{2} .
$$

(3) We consider the IBVP of heat conduction of a rod with finite length:

$$
\frac{\partial u}{\partial t}=2 \frac{\partial^{2} u}{\partial x^{2}}
$$

with the periodic B.C's:

$$
u(-\pi, t)=u(\pi, t), \quad u^{\prime}(-\pi, t)=u^{\prime}(\pi, t), \quad(t>0)
$$

and I.C.

$$
u(x, 0)=2 x+|\sin x|, \quad(-\pi<x<\pi)
$$

(4) We consider the IBVP of vibration of a string with finite length:

$$
\frac{\partial^{2} u}{\partial t^{2}}=4 \frac{\partial^{2} u}{\partial x^{2}}
$$

with B.C's:

$$
u(-1, t)=u(1, t)=0, \quad(t>0)
$$

and I.C.

$$
\left\{\begin{array}{l}
u(x, 0)=\left(1-x^{2}\right) \\
\frac{\partial u}{\partial t}(x, 0)=0
\end{array} \quad(-1<x<1)\right.
$$

(5) Find solution $u(x, y)$ if

$$
\left.\nabla^{2} u(x, y)=0, \quad(0<x, y<\pi), t>0\right)
$$

and

$$
\begin{aligned}
& u(0, y)=u(\pi, y)=0, \quad(0<y<\pi) \\
& u_{y}(x, 0)=x(x-\pi) \\
& u_{y}(x, \pi)=\left(\cos ^{2} x+3 \sin x\right) \\
& \quad(0<x<\pi)
\end{aligned}
$$

