
Exercises from the quizes

Igor Wigman

1. Compute the limits

(a)

lim
x→−∞

x3 − 4x2 + 1

(
√

2x4 − 17x3 + 1)3/4
.

(b)

lim
x→∞

x3 − 4x2 + 1

(πx4 − 17x3 + 1)3/4
.

2. The function f(x) : R → R is defined by the following formula

f(x) =


cos(πx)

x
, x > 0

3, x = 0

x sin
(
π
√

x2 + 3
)
, −1 ≤ x < 0√

−(x + 1), x < −1

(a) Compute the limit lim
x→a

f(x) for every real a ∈ R (including infinite

limits). For every point a ∈ R that the limit lim
x→a

f(x) doesn’t exist,

compute the one-sided limits lim
x→a+

f(x) and lim
x→a−

f(x). Explain.

(b) Compute the limits lim
x→±∞

f(x). Explain.

3. For every value of the parameter p ∈ R, the function fp(x) : R → R is
defined by

fp(x) =

{
(x− p)2, x ≥ 2p

x3, x < 2p
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(a) Find all the values of the parameter p, such that the function fp

is continuous on R. Explain.

(b) For every value of p you found in (a), determine whether the
function f is differentiable on R. Explain.

4. What are the (global and local) extrema of

f(x) = cosh x?

Use the definition of the hyperbolic cosine. Deduce that cosh x ≥ 1 on
R.

5. (a) Write the linear approximation L(x) of f(x) = ex about x = 0
and the error term E(x) = f(x)− L(x) in Lagrange form.

(b) Using the Lagrange form, bound |E(x)| from above for any x > 0.
Prove the inequality

ex − (1 + x) >
x2

2

for x > 0. (Note that this is stronger than the inequlity in the
midterm).

(c) Write the second order Taylor polynomial P2(x) of f(x) about x =
0 and the error term E2(x) = f(x)− P2(x) in the Lagrange form.
Approximate the Euler constant e by P2(1). Use the Lagrange
form to determine if this approximation above or below (in other
words, is P2(1) ≤ e or P2(1) ≥ e). Bound |E2(x)| to estimate how
many correct decimal digits it gives you.

6. Prove the following inequality:

√
1− x2 + x arcsin x ≥ 1

on [−1, 1].

7. Let f : I → R be a real valued function defined on the interval I =
(−1, 1) by

f(x) =
1

1− x
.
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(a) Write the linear approximation L(x) of f(x) about x = 0 and
the error term E(x) = f(x) − L(x) in Lagrange form. Using the
Lagrange form, bound |E(x)| from above for any |x| < 1/2.

(b) Using the Lagrange form of the remainder, check if the approxima-
tion L(x) is above or below. Validate your answer by computing
explicitly E(x) = f(x)− L(x) in its simplest form.

(c) Using the explicit computation in (b), for any x ∈ I find a number
s between 0 and x, such that

f ′′(s)

2!
x2 = E(x),

guaranteed by the theorem on the remainder in the Lagrange form.

8. (a) What are the (global and local) extrema of the function

f(x) = sin x + cos x?

Note that f is periodic.

(b) Deduce from (a) that for every x ∈ R we have

| sin x|+ | cos x| ≤
√

2,

9. Let f : R → R be a real valued function defined on the whole real line
by

f(x) = sin(x)− cos x.

(a) Write the linear approximation L(x) to f about x = π/4. Write
the expression of the error term E(x) = f(x) − L(x) in the La-
grange form. Using the inequality in (8b), give an upper bound
to |E(x)| in the interval (π/4− 0.01, π/4 + 0.01).

(b) Write the second order Taylor polynomial P2(x) of f(x) about
x = π/4 and the error term E2(x) = f(x)−P2(x) in the Lagrange
form. Using the inequality in (1b), bound |E2(x)| from above in
the interval (π/4− 0.01, π/4 + 0.01).

(c) In light of (b), can you improve your bound in (a)?
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10. Compute the following limits or show they don’t exist:

(a) lim
(x,y)→(0,0)

x4 sin (x2−y2)
|x|3+|y|3 .

(b) lim
(x,y)→(0,0)

x4 sin (x2+y2)
x3+y3 .

Note: there is no absolute value in the denominator.

(c) lim
(x,y)→(0,0)

1−cos (x3+2xy+y3)
x3+2xy+y3 .

(d) lim
(x, y)→(0,0)

x3+y2x
|x|3+|y|3 .

(e) lim
(x, y)→(1,0)

sin2 (xy)
cos (xy)−1

(f) lim
(x, y)→(0, 0)

f(x, y), where

f(x, y) =

{√
x2 + y2 − 1, x2 + y2 ≥ 1

0 (x, y) = (0, 0)
.

11. Let f(x, y) : D → R be the 2-variable function defined by

f(x, y) = 2 cos (3x + 4y)− sin (3x + 4y).

(a) For a point P = (x0, y0), compute the partial derivatives ∂z
∂x
|P and

∂z
∂y
|P . Write the equation of the tangent plane π of the surface

defined by f at Q = (π/4, π/4,−3
√

2
2

). Compute the parametric
form of the normal line to π at Q.

(b) Compute the partial derivatives of the second order ∂2z
∂x2 |P , ∂2z

∂y2 |P ,
∂2z

∂x∂y
|P and ∂2z

∂y∂x
|P (Hint: you can compute just 3 derivatives and

get the remaining one ”for free” using the corresponding theorem).

(c) Using the results you got in (b), check that the function f satisfies
the partial differential equation

∂2f

∂x2
+

∂2f

∂y2
+ 25f = 0.

12. Let f(x, y) : D → R be the 2-variable function defined by

f(x, y) = cosh (x2 + y2) + sinh (x2 + y2).
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(a) For a point P = (x0, y0), compute the partial derivatives ∂z
∂x
|P and

∂z
∂y
|P . Write the equation of the tangent plane π of the surface

defined by f at Q = (0, 1, e). Compute the parametric form of the
normal line to π at Q.

(b) Compute the partial derivatives of the second order ∂2z
∂x2 |P , ∂2z

∂y2 |P ,
∂2z

∂x∂y
|P and ∂2z

∂y∂x
|P (Hint: you can compute just 3 derivatives and

get the remaining one ”for free” using the corresponding theorem).

(c) Using the results you got in (b), check that the function f satisfies
the partial differential equation

∂2f

∂x∂y
− 4xyf = 0.

13. Let f(x, y) : D → R be the 2-variable function defined by

f(x, y) = ex2−y2

.

(a) For a point P = (x0, y0), compute the partial derivatives ∂z
∂x
|P and

∂z
∂y
|P . Write the equation of the tangent plane π of the surface

defined by f at Q = (1, 0, e). Compute the parametric form of the
normal line to π at Q.

(b) Compute the partial derivatives of the second order ∂2z
∂x2 |P , ∂2z

∂y2 |P ,
∂2z

∂x∂y
|P and ∂2z

∂y∂x
|P .

(c) Using the results you got in (b), check that the function f satisfies
the partial differential equation

∂2f

∂x2
+

∂2f

∂y2
+ 2

∂2f

∂x∂y
− 4(x− y)2f = 0.
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