1. (1 pt) Let

$$
\mathbf{A}=\left[\begin{array}{cc}
-1 & -9 \\
8 & -5
\end{array}\right]
$$

and

$$
\mathbf{B}=\left[\begin{array}{cc}
-2 & -3 \\
-9 & 5
\end{array}\right]
$$

Find a 2×2 matrix \mathbf{X} that solves the matrix equation

$$
\begin{gathered}
-3(\mathbf{A}-\mathbf{B}+\mathbf{X})=-2(\mathbf{X}-\mathbf{A}) \\
\mathbf{X}=\left[\begin{array}{ll}
- & - \\
- & -
\end{array}\right]
\end{gathered}
$$

2.(1 pt)

If A and B are 5×4 matrices, and C is a 3×5 matrix, which of the following are defined?

- A. $B A^{T}$
- B. A^{T}
- C. $A B$
- D. $C B$
- E. $A-B$
- F. $C+B$

3. $(1 \mathrm{pt})$ Let $A=\left[\begin{array}{cc}1 & 3 \\ -2 & -6\end{array}\right]$. Find two 2×2 matrices B and C such that $A B=A C$ but $B \neq C$.

$$
\left[\begin{array}{ll}
- & - \\
- & -
\end{array}\right]\left[\begin{array}{ll}
- & - \\
- & -
\end{array}\right]
$$

4. (1 pt) Let

$$
A=\left[\begin{array}{cc}
-1 & -1 \\
3 & 2
\end{array}\right]
$$

Then A^{2}, A^{3}, A^{1370} are respectively
5. $(1 \mathrm{pt})$ The inverse of the matrix $\mathbf{A}=\left[\begin{array}{cc}7 & -3 \\ -8 & 9\end{array}\right]$ is

$$
\left[\begin{array}{ll}
- & - \\
- & -
\end{array}\right]
$$

6. $(1 \mathrm{pt})$ The inverse of the matrix $\mathbf{A}=\left[\begin{array}{ccc}13 & -9 & -6 \\ -3 & 1 & 1 \\ -4 & 3 & 2\end{array}\right]$ is

$$
\frac{\left[\begin{array}{lll}
- & - & - \\
- & - & -
\end{array}\right]}{\text { 7.(1 pt) The inverse of the matrix } \mathbf{A}=\left[\begin{array}{ccc}
1 & -9 & 3 \\
-2 & -1 & 1 \\
0 & 3 & -1
\end{array}\right]}
$$ is

$$
\left[\begin{array}{lll}
- & - & - \\
- & - & - \\
- & - & -
\end{array}\right]
$$

8. (1 pt) In each of the following problems, find elementary matrices such that the respective matrix equations hold.

$$
\text { (i) }\left[\begin{array}{lll}
- & - & - \\
- & - & -
\end{array}\right]\left[\begin{array}{ccc}
5 & -2 & 5 \\
-2 & -4 & 1 \\
3 & -2 & 4
\end{array}\right]=\left[\begin{array}{ccc}
5 & -2 & 5 \\
-2 & -4 & 1 \\
-3 & 2 & -4
\end{array}\right]
$$

$$
\left[\begin{array}{l}
---\square- \\
- \\
-
\end{array}\right]\left[\begin{array}{ccc}
5 & -2 & 5 \\
-2 & -4 & 1 \\
-3 & 2 & -4
\end{array}\right]=\left[\begin{array}{ccc}
5 & -2 & 5 \\
-2 & -4 & 1 \\
3 & -2 & 4
\end{array}\right]
$$

$$
\text { (ii) }\left[\begin{array}{lll}
- & - & - \\
- & - & -
\end{array}\right]\left[\begin{array}{lll}
4 & -4 & 2 \\
2 & -2 & 3 \\
4 & -3 & 2
\end{array}\right]=\left[\begin{array}{lll}
2 & -2 & 3 \\
4 & -4 & 2 \\
4 & -3 & 2
\end{array}\right]
$$

$$
\left[\begin{array}{llll}
- & - & - \\
- & - & - \\
\text { iii) } & - & -
\end{array}\right]\left[\begin{array}{lll}
2 & -2 & 3 \\
4 & -4 & 2 \\
4 & -3 & 2
\end{array}\right]=\left[\begin{array}{lll}
4 & -4 & 2 \\
2 & -2 & 3 \\
4 & -3 & 2
\end{array}\right]
$$

(iiii)

$$
\begin{aligned}
& {\left[\begin{array}{lll}
- & - & - \\
- & - & - \\
- & - & -
\end{array}\right]\left[\begin{array}{ccc}
4 & 3 & -1 \\
-3 & 2 & 2 \\
-4 & 5 & -4
\end{array}\right]=\left[\begin{array}{ccc}
-12 & 23 & -17 \\
-3 & 2 & 2 \\
-4 & 5 & -4
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
-12 & 23 & -17 \\
- & - & - \\
-3 & 2 & 2 \\
-4 & 5 & -4
\end{array}\right]=\left[\begin{array}{ccc}
4 & 3 & -1 \\
-3 & 2 & 2 \\
-4 & 5 & -4
\end{array}\right]}
\end{aligned}
$$

9. (1 pt) Let

$$
\mathbf{A}=\left[\begin{array}{ll}
0 & 9 \\
6 & 5
\end{array}\right]
$$

(i) Write \mathbf{A} as a product of 4 elementary matrices:

(ii) Write \mathbf{A}^{-1} as a product of 4 elementary matrices: $\quad \mathbf{A}^{-1}=\left[\begin{array}{ll}- & - \\ - & -\end{array}\right]\left[\begin{array}{ll}- & - \\ - & -\end{array}\right]\left[\begin{array}{ll}- & - \\ - & -\end{array}\right]$ $\left[\begin{array}{ll}- & - \\ - & -\end{array}\right]$

