1. (2 pts) For each system, determine whether it has a unique solution (in this case, find the solution), infinitely many solutions, or no solutions.
2.

$$
\begin{aligned}
& -2 x+4 y=14 \\
& -6 x+12 y=42
\end{aligned}
$$

- A. Unique solution: $x=0, y=0$
- B. Unique solution: $x=14, y=42$
- C. Unique solution: $x=\frac{14}{-2}, y=0$
- D. No solutions
- E. Infinitely many solutions
- F. None of the above

2.

$$
\begin{aligned}
7 x+6 y & =33 \\
-5 x-7 y & =-10
\end{aligned}
$$

- A. No solutions
- B. Unique solution: $x=9, y=-5$
- C. Unique solution: $x=0, y=0$
- D. Infinitely many solutions
- E. Unique solution: $x=-5, y=9$
- F. None of the above

3.

$$
\begin{array}{r}
-5 x+6 y=0 \\
7 x-3 y=0
\end{array}
$$

- A. Infinitely many solutions
- B. Unique solution: $x=0, y=0$
- C. Unique solution: $x=1, y=4$
- D. Unique solution: $x=+3, y=-5$
- E. No solutions
- F. None of the above

4.

$$
\begin{aligned}
3 x+2 y & =-8 \\
-3 x-2 y & =9
\end{aligned}
$$

- A. Unique solution: $x=0, y=0$
- B. Unique solution: $x=-8, y=9$
- C. Infinitely many solutions
- D. No solutions
- E. Unique solution: $x=9, y=-8$
- F. None of the above
2.(1 pt) For what value(s) of k (if any) will the system

$$
\begin{aligned}
k x+6 y & =-15 \\
10 x+4 y & =-10
\end{aligned}
$$

have
(a) no solution: \qquad (enter NA if no such k exists).
(b) infinitely many solutions: \qquad (enter NA if no such k exists).
(c) for all other values of k the system has \qquad solution(s).
3. (1 pt) For what value(s) of k (if any) will the system

$$
\begin{aligned}
k x-9 y & =-3 \\
3 x-3 k y & =+3
\end{aligned}
$$

have
(a) no solution: \qquad (enter NA if no such k exists).
(b) infinitely many solutions: \qquad (enter NA if no such k exists).
(c) for all other values of k the system has \qquad solution(s).
4. (2 pts) The parametric equations of the line of intersection of the two planes
$2 x+4 y-6 z=4$ and $10 x+21 y+4 z=-3$
found by Gauss-Jordan elimination are

5. $(2 \mathrm{pts})$ The reduced row echelon form of the matrix

$$
A=\left[\begin{array}{ccc}
1 & -5 & 3 \\
-1 & 5 & -2 \\
1 & -5 & 0
\end{array}\right]
$$

is

$$
\left[\begin{array}{lll}
- & - & - \\
- & - & - \\
- & - & -
\end{array}\right]
$$

6. (2 pts) The reduced row echelon form of the matrix

$$
A=\left[\begin{array}{cccc}
1 & 3 & 8 & 5 \\
2 & 7 & 20 & 12 \\
3 & 9 & 24 & 16
\end{array}\right]
$$

is

$$
\left[\begin{array}{llll}
- & - & - & - \\
- & - & - & -
\end{array}\right]
$$

7.(2 pts)

Solve the system by means of Gauss-Jordan elimination

$1 x-1 y-4 z$	$=7$
$-3 x+4 y+13 z$	$=-24$
$-3 x+3 y+13 z$	$=-21$

$x=$
$y=$
8. (3 pts) The solution of the linear system

$$
\begin{array}{ccccc}
1 x_{1} & +0 x_{2} & -2 x_{3} & +1 x_{4} & =-8 \\
-1 x_{1} & +1 x_{2} & +3 x_{3} & -1 x_{4} & =4 \\
-5 x_{1} & +2 x_{2} & +12 x_{3} & -4 x_{4} & =27
\end{array}
$$

found by Gauss-Jordan elimination is

9.(1 pt) Using Gauss-Jordan elimination, solve the system

$$
\left\{\begin{aligned}
5 x_{1}-4 x_{2}+4 x_{3}+4 x_{4} & =4 \\
-x_{1}+x_{2}+3 x_{3}+3 x_{4} & =1 \\
4 x_{1}-3 x_{2}+7 x_{3}+7 x_{4} & =5 \\
-2 x_{1}+2 x_{2}+6 x_{3}+6 x_{4} & =2
\end{aligned}\right.
$$

$\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right)=\left(\begin{array}{l}- \\ - \\ - \\ -\end{array}\right)+\left(\begin{array}{l}- \\ - \\ -\end{array}\right) s+\left(\begin{array}{l}- \\ - \\ - \\ -\end{array}\right) t$.
A complete solution to this problem is one of the two problems to be handed in with Written Assignment 2.
10. (1 pt) Using Gauss-Jordan elimination, solve the system

$$
\begin{array}{r}
x_{1}-4 x_{2}-2 x_{3}+3 x_{5}+2 x_{6}=-1 \\
-x_{4}-4 x_{5}-4 x_{6}=6 \\
x_{1}-4 x_{2}-5 x_{5}-6 x_{6}=-1
\end{array}
$$

$$
\begin{aligned}
& \left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right)=\left(\begin{array}{l}
- \\
- \\
- \\
- \\
-
\end{array}\right)+\left(\begin{array}{l}
- \\
- \\
- \\
- \\
- \\
- \\
- \\
- \\
- \\
- \\
- \\
- \\
- \\
- \\
- \\
- \\
- \\
-
\end{array}\right) \\
& \left(\begin{array}{l}
- \\
- \\
- \\
- \\
- \\
- \\
-
\end{array}\right)
\end{aligned}
$$

