Assignment 1

Simon M. Foucher due 9/27/06 at 11:00 PM.

MATH133, Fall 2005

You may attempt any problem an unlimited number of times.

1.(1 pt) Let P = (5, -4, 5) and Q = (-9, 5, 9). Let *M* be the midpoint of the line segment \overline{PQ} , and let *R* and *S* be the points that divide \overline{PQ} into three equal parts.

Then M = (, ..., ...), R = (, ..., ...),S = (, ..., ...).

2.(1 pt) (a) Let P = (2,4,2), Q = (0,1,-1), R = (0,1,1) and S = (-1,3,0). The point of intersection of the two lines joining the midpoints of opposite sides of the quadrilateral PQRS has coordinates (______, ____)

(b) (**This part is to be handed in.**) If PQRS is a quadrilateral with no three of the points P,Q,R,S colinear, show that the lines joining the midpoints of opposite sides bisect each other.

3. (1 pt) The vector projection of the vector $\mathbf{v} =$				$-4 \\ 3 \\ 3$	onto
the vector $\mathbf{u} =$ $w_1 = \underline{\qquad}$	$\begin{bmatrix} 2\\ -4\\ -2 \end{bmatrix}$	is the vector \mathbf{w} =	$ \begin{array}{c} w_1\\ w_2\\ w_3 \end{array} $, wher	e
$w_2 = \underline{\qquad} \\ w_3 = \underline{\qquad} $					

4.(1 pt) Let Δ be the triangle with vertices at P = (5, -4, 5), Q = (-2, 0, 2) and R = (4, 3, -3).

The area of Δ is:

The angle $\angle QPR$ is	degrees
The angle $\angle PQR$ is	degrees
The angle $\angle PRQ$ is	degrees

5.(1 pt) The equation of the plane passing through the 3 points P = (1, 1, -5), Q = (-5, -2, 0) and R = (-5, -1, -2) is

 $\underline{x} + \underline{y} + \underline{z} + \underline{z} = 0$

6.(1 pt) Let *l* be the line that passes through the point P = (8, -9, 9) and is perpendicular to the plane -1x + 3y - 8z = -12. The parametric equations of *l* are: x = -t - t

y =____t

 $z = \underline{\qquad} + \underline{\qquad} t$

7.(1 pt) Let *l* be the line that passes through the point P = (6,0,0) and is parallel to the line with parametric equations

$$x = -2 - 3t$$

$$y = 2 + 1t$$

$$z = 3 + 0t$$

The vector equation of *l* is
$$\mathbf{x} = \mathbf{p} + t\mathbf{d}$$
 where

$$\mathbf{p} = (\underline{\qquad}, \underline{\qquad}, \underline{\qquad})^T$$
$$\mathbf{d} = (\underline{\qquad}, \underline{\qquad}, \underline{\qquad})^T$$

8.(1 pt) Let P = (8, -3, 8) and Q = (-4, 1, -8). The set of all points that are equidistant from *P* and *Q* has the equation x+x+y+z+z=0

9.(1 pt) The distance between the point

$$P = (4, -4, -2)$$

and the plane with the equation

$$-4x + 2y - 1z = 7$$

is d =

4 T

10.(1 pt) Determine the distance between the parallel planes -2x - 1y - 3z = 2 and 2x + 1y + 3z = -6:

11.(1 pt) Find points P,Q which are closest possible with P lying on the line P

x = 0 - 6t, y = 1 - 10t, z = -2 - 4t

and Q lying on the line

x = 158 + 7t, y = 303 - 9t, z = -718 - 2t.

Hint: Use the fact that the line joining P and Q is perpendicular to the two given lines. P = (

$$Q = (\underline{\qquad}, \underline{\qquad}, \underline{\qquad})$$

12.(2 pts) (A complete solution to this problem is to be handed in.)

Let P = (2, -1, -5), Q = (4, -2, -3), R = (1, -2, -3) and S = (4, 0, -6). Let l_1 be the line passing through *P* and *Q*, and let l_2 be the line passing through *R* and *S*.

(i) The distance between R and l_1 is _____

(ii) The distance between l_1 and l_2 is _____.

13.(1 pt) The equation of the plane passing through the point (-3, -5, 5)

and perpendicular to the line of intersection of the two planes -8x + 4y - 8z = -1, -3x - 2y - 2z = 3 is

 $\underline{\qquad} x + \underline{\qquad} y + \underline{\qquad} z = \underline{\qquad}$