You may attempt any problem an unlimited number of times.

1. $(1 \mathrm{pt})$ Let $P=(5,-4,5)$ and $Q=(-9,5,9)$. Let M be the midpoint of the line segment $\overline{P Q}$, and let R and S be the points that divide $\overline{P Q}$ into three equal parts.

Then
$M=(\square, \longrightarrow)$,
$R=\left(_\right.$, —, , $)$,
$S=(—, ~ —, ~)$.
2. (1 pt) (a) Let $P=(2,4,2), Q=(0,1,-1), R=(0,1,1)$ and $S=(-1,3,0)$. The point of intersection of the two lines joining the midpoints of opposite sides of the quadrilateral PQRS has coordinates (\qquad , __)
(b) (This part is to be handed in.) If PQRS is a quadrilateral with no three of the points P, Q, R, S colinear, show that the lines joining the midpoints of opposite sides bisect each other.
3. $(1 \mathrm{pt})$ The vector projection of the vector $\mathbf{v}=\left[\begin{array}{c}-4 \\ 3 \\ 3\end{array}\right]$ onto the vector $\mathbf{u}=\left[\begin{array}{c}2 \\ -4 \\ -2\end{array}\right]$ is the vector $\mathbf{w}=\left[\begin{array}{l}w_{1} \\ w_{2} \\ w_{3}\end{array}\right]$, where $w_{1}=$
$w_{2}=-$
$w_{3}=$
4. $(1 \mathrm{pt})$ Let Δ be the triangle with vertices at $P=(5,-4,5)$, $Q=(-2,0,2)$ and $R=(4,3,-3)$.

The area of $\triangle \mathrm{is}$: \qquad
The angle $\angle Q P R$ is \qquad degrees
The angle $\angle P Q R$ is \qquad degrees
The angle $\angle P R Q$ is \qquad degrees
5. $(1 \mathrm{pt})$ The equation of the plane passing through the 3 points $P=(1,1,-5), Q=(-5,-2,0)$ and $R=(-5,-1,-2)$ is

$$
\ldots x+\ldots y+\ldots z+\ldots=0
$$

6. $(1 \mathrm{pt})$ Let l be the line that passes through the point $P=$ $(8,-9,9)$ and is perpendicular to the plane $-1 x+3 y-8 z=$ -12 .
The parametric equations of l are:

7. $(1 \mathrm{pt})$ Let l be the line that passes through the point $P=$ $(6,0,0)$ and is parallel to the line with parametric equations

$$
\begin{aligned}
x & =-2-3 t \\
y & =2+1 t \\
z & =3+0 t
\end{aligned}
$$

The vector equation of l is $\mathbf{x}=\mathbf{p}+t \mathbf{d}$ where
$\mathbf{p}=(\square, \longrightarrow, \square)^{T}$
$\mathbf{d}=(\square, \square)^{T}$
8. $(1 \mathrm{pt})$ Let $P=(8,-3,8)$ and $Q=(-4,1,-8)$. The set of all points that are equidistant from P and Q has the equation

$$
\underline{x}+\ldots y+\ldots z+\ldots=0
$$

9. $(1 \mathrm{pt})$ The distance between the point

$$
P=(4,-4,-2)
$$

and the plane with the equation

$$
-4 x+2 y-1 z=7
$$

is
$d=$
10. (1 pt) Determine the distance between the parallel planes $-2 x-1 y-3 z=2$ and $2 x+1 y+3 z=-6$:
11.(1 pt) Find points P,Q which are closest possible with P lying on the line
$x=0-6 t, y=1-10 t, z=-2-4 t$
and Q lying on the line
$x=158+7 t, y=303-9 t, z=-718-2 t$.
Hint: Use the fact that the line joining P and Q is perpendicular to the two given lines.
$\mathrm{P}=(\longrightarrow, \longrightarrow)$
$\mathrm{Q}=(\ldots, \ldots, \quad$, $)$
12.(2 pts) (A complete solution to this problem is to be handed in.)
Let $P=(2,-1,-5), Q=(4,-2,-3), R=(1,-2,-3)$ and $S=(4,0,-6)$. Let l_{1} be the line passing through P and Q, and let l_{2} be the line passing through R and S.
(i) The distance between R and l_{1} is
(ii) The distance between l_{1} and l_{2} is \qquad
13.(1 pt) The equation of the plane passing through the point $(-3,-5,5)$
and perpendicular to the line of intersection of the two planes
$-8 x+4 y-8 z=-1, \quad-3 x-2 y-2 z=3$
is
$_x+\ldots y+\ldots \quad z=$
\qquad
\qquad
\qquad

