

Router Architectures

Introduction...

- In the simplest scenario, a router handles two problems
 - Forwarding Problem
 - Routing Problem
- Forwarding Problem for an incoming packet figure out the "outbound" interface
- Routing Problem cooperate with other routers to figure out reachability to all possible network targets

Introduction

- Forwarding Problem:
 - Route lookup is not a simple string match!
 - Longest prefix search best match in among the routing table entries for the incoming packet
- Route lookup several constraints
 - **Time:** find next-hop should be minimized
 - Space: route table should be represented compactly – so can fit in high speed memory

Introduction

- Just solving the two problems forwarding and routing is not sufficient to qualify as a modern router!
- Router is also a *network resource allocator*!
 - Controls in a distributed manner the share of resource allocated to a traffic flow (e.g., web traffic can be a flow)

Introduction...

- Recent advances have created multigigabit speed routers
 - Specialized hardware
 - Faster switching fabrics
 - Efficient and faster "lookup" algorithms

Basic Router Architecture

Basic Router Architecture

Packets going for different output are interfering (red car blocking the blue car)

More on Structure of IP Routers

- Line Cards (Network Interfaces) – connects networks with different technologies
- Switching Backplane

 shuffles the traffic
 from one interface to
 another connects
 line cards & CPU
- Router Processor (CPU) – runs routing protocol, builds routing table, and overall management

First Generation IP Routers Very similar to what we get out of a Linux PC based router! Shared Backplane

Second Generation IP Routers

- Fast path: packets for lookup is known (cached); no options, etc
- Slow path: lookup computation needs to be done at CPU

Third-Generation Switches/Routers

Switching Fabric provides the connectivity among the components

CPU/Router processor is only consulted for "slow" path traffic

Basic Router Operations

- When a packet comes in:
 - validate the packet (link layer dependent processing)
 - queue at I/P side
 - lookup the next hop
 - switch across the connection fabric
 - queue at the O/P fabric
 - transmit
 - if there are functionality like QoS built into the router there may be added functionality and steps

Next Hop Lookup

- Lookup basically does a "longest prefix match"
- It is necessary to design a very *fast* lookup algorithm
 - lookup database can be assumed to change very slowly – i.e., update frequency is much less compared to the read frequency

Next Hop Lookup

- Approaches
 - CAMs
 - Trees, tries
 - hash tables
 - hybrid approaches

Lookup Using CAMs

 CAMs allow retrieval of *next_port* (content) info. based on *dest_addr* (content)

Lookup Using CAMs

- Some limitations of CAMs
 - lower density than conventional (RAM) memory
 - slower access time
 - greater power consumption
 - best suited to exact matches, although can be used for longest prefix match

CAM Example

Entry

Addres

Port

PATRICIA Trie

- PATRICIA (Practical Algorithms To Retrieve Information Coded in Alphanumeric) invented in 1968 by D. L. Morrison
- Tries commonly used data structures to organize routing table entries
- Search is based on binary representation of addresses
- Takes routing table entries and forms a radix tree structure consisting of address prefixes and positions in the address to test

PATRICIA Trie

- Longest-match lookup consists of walking the trie until the end is reached or a match is discovered
- Patricia tries were used in previous generation routers
 - limited amount of memory is needed to store routing table (could fit into fast caches)
- Can result in large number of memory accesses -- particularly when backtracking takes place

Route Lookup Problem Again

Match the incoming destination to the "best" entry in the table below. If none match, take the default entry!

Network	Mask	Output Port
192.168.121.0	255.255.255.0	А
197.132.20.0	255.255.255.0	В
112.121.30.0	255.255.255.0	С
0.0.0.0 🧪	0.0.0.0	D

Default route

Lookup Situations with PATRICIA Trie

- Direct (one pass) match
 - Host route
 - Network address
- Match after backtracking
 - Single pass
 - Host route
 - Network address
 - Multiple passes
 - Host route
 - Network address
- Default address

Direct Match to Host & Net. Addr.

Match Network Address after backtrack

Insertion in PATRICIA Trie

Route Lookup Optimization

- Trie lookups
 costs → cache
 active lookups
- "Slow path" invoked when cache miss
- Slow path updates fast path cache

Blocking Problems in Routers

Blocking Problems in Routers

Blocking Problems in Routers

Blocking Problems...

- Input queue blocking.. major cause head-of-line (HOL) blocking
- Contention within the switching fabric
 aka blocking
- Output queue blocking.. backlog from successive routers

Dealing with blocking

- Overprovisioning
 - internal links much faster than inputs
- Buffers
 - at input or output
- Backpressure
 - if switch fabric doesn't have buffers, prevent packet from entering until path is available
- Parallel switch fabrics
 - increases effective switching capacity

Blocking in Switch Fabrics

- Can have both internal (within fabric) and output blocking
- Internal no path to output
- Output trunk unavailable
- Unlike a circuit switch, cannot predict if packets will block (why?)
- If packet is blocked, must either buffer or drop it

Buffering within Switch Fabric

 Buffering can be distributed within the switching fabric to deal with contention

> Buffered Cross-bar (distribution of buffers)

Input buffering (input queueing)

- No speedup in buffers or trunks (unlike output queued switch)
- Needs arbiter

Output queueing

- Don't suffer from head-of-line blocking
- But output buffers need to run much faster than trunk speed (why?)