
Transport Protocols



Introduction

 Protocols – what are they used for?
◦ Transferring application information 

among machines (“transporting” 
protocols)

◦ Naming and discovering resources and 
machines (“networking” protocols)

 “Transporting” protocols might be 
“end-to-end” protocols

 “Networking” protocols might be “hop-
by-hop” protocols



“Transporting” protocols

 “Transporting” protocols are responsible 
for pushing data from A to B

 Do two major functions:
◦ Manipulate data – moving data to/from net, 

error detection, buffering, encryption, moving 
data to/from apps, presentation formatting, 
framing

◦ Control transfer process – flow control, 
congestion control, multiplexing, time-
stamping, and detect network transmission 
problems



Manipulating Data in Protocols

Application

App-to-OS data movement

(e.g., send_udp(...))

Data buffering

inside OS

OS-to-net data movement

(e.g., write data to network interface)
Network transport over

physical network



Presentation Formatting

Application

Floating point values

need to be converted

Simplest formatting – host-to-network

byte ordering; happens on all network

programs

Linux

x86 arch Sun

Solaris

XDR – external data representation

NetCDF – network common

data format

Needed when heterogeneous

machines are interconnected by 

networks (e.g., scientific 

computing)



Multiplexing among Apps

Source Application

OS-to-net data movement

(e.g., write data to network interface)
Network transport over

physical network

Destination Application



Error Detection
Source application

can be involved in “fixing”

data loss as well. Newer

data can be provided by the App

Data held by OS could be re-transmitted

to “fix” network errors (without the

App knowing about the network data loss)

Error detection can be

carried out by network hardware

and/or OS

Destination Application



Flow Control

Transmission pauses waiting for

space at the receiver
Send flow control message

to the source to stop transmit

Destination  buffer

full – may be destination

application is not actively

empting the buffer or slow

Prevent fast transmitter 

from 

overrunning a slow 

receiver



Congestion Control

Request end station to pause

transmission because network is

unable to cope with traffic load (e.g.,

large wait queues)

Network routers in path

from source to destination

Destination  buffer

may be empty!Prevent a busy end station 

from overburdening the 

network



Other “Transporting” Protocol 

Issues
 Addressing

◦ Mostly done by Networking protocols

◦ Multiplexing part is done by transporting 

protocols

 Connection establishment

◦ Sender/receiver synchronization

◦ State establishment at both ends

 Connection release

◦ Gracefully tearing down the state



Implementation of “Transporting” 

protocols
 “Transporting” protocols are 

implemented in a layered manner

 Primary motivation – complexity 

management



The concept of Layering
 Physical – transmits bits 

across  a link

 Data link – deals with 
checksum; errors; access 
control

 Network – route 
computation; packet 
fragmentation; network 
interconnection

 Transport – lost packets, 
packet reordering, 
congestion

 Session – not much use; 
multimedia session 
control?

 Presentation – data 
representation for network 

physica

l

physica

l

data 

link

data 

link

network network

transport transport

session session

presentatio

n

presentatio

n

applicatio

n

applicatio

n



Drawbacks of Layered 

Implementation
 Efficiency – could lead to multiple 

copying

 Framing – data can be divided/joined 

as it goes through a layered stack



Simple Data Transfer Protocol

while (1) {
get_net_layer(&buf);
pkt.payload = buf;
put_phy_layer(&pkt);

}

while (1) {
get_phy_layer(&pkt);
buf = pkt.payload;
put_net_layer(&buf);

}

Buffer might be necessary even when retransmission is not done.

For example,  buffering can help in framing the data. That is, data

injected by the application is usually buffered and “packetized” 

based on some condition.

No reliability in

Protocol



Reliable Data Transfer Protocols

 Objective:
◦ Reliably transmit data between two nodes

 Reliable data transfer dealt with in 
different layers of the protocol stack
◦ physical layer – could be doing reliable 

transmit

◦ transport layer – could be redoing reliable 
data transmit

◦ application layer – could be doing it 
instead of the transport layer



Reliable Data Transfer...

Physical layer

Transport layer

Application layer

Layer not relevant to the discussion

are not shown here!

In
c
re

a
s
in

g
 a

p
p

lic
a

ti
o

n
 c

o
s
t

In
c
re

a
s
in

g
 r

e
lia

b
ili

ty
 (

d
o

n
e

 e
n

d
-t

o
-e

n
d

)

B
e

tt
e

r 
in

-n
e

tw
o

rk
 i
n

fo
rm

a
ti
o

n
 (

c
h

e
a

p
 h

e
a

lin
g

?
)

U
p

-t
o

-d
a

te
 a

p
p

lic
a

ti
o

n
 in

fo
rm

a
ti
o

n



Implementing Reliable Data 

Transfer
 OS protocols provide reliability “buffer” 

to “buffer”

 Concern 1: prevent loss at buffer 
(buffer overruns)

 Concern II: recover from data loss in 
networks

 Concern III: detect and correct 
corrupted data

 Concern IV: deal with out-of-order 
data reception



Simple Data Transfer Protocol

 SDTP shown above assumes:

◦ infinite buffers (no buffer overruns)

◦ loss-less channel (no packet loss)

◦ error-free channel (no packet corruption)

◦ in-order data transfer (no packet reordering)

 SDTP is very idealistic – may work in local area 
environments!

// sender 

while (1) {
get_net_layer(&buf);
pkt.payload = buf;
put_phy_layer(&pkt);

}

// receiver

while (1) {
get_phy_layer(&pkt);
buf = pkt.payload;
put_net_layer(&buf);

}

Unrestricted Simplex Protocol



Simple Data Transfer Version 2
 Adds flow control:

◦ Receiver has finite buffer space and may not keep up with 
the sender

// sender loop

bool dst_buf_full = FALSE
while (1) {

if (dst_buf_full == FALSE)
get_net_layer(&buf);
pkt.payload = buf;
put_phy_layer(&pkt);

get_phy_layer(&ack);
dst_buf_full = ack.buf_state;
// some timed trigger to
// iterate

}

send_data() {
// write data to network buffer

}

// receiver
int bspace = BUF_SIZE;

while (1) {
get_phy_layer(&pkt);
buf = pkt.payload;
bspace--;
put_net_layer(&buf);
if (bspace <= 0)

ack.buf_state = FALSE;
else

ack.buf_state = TRUE;
put_phy_layer(&ack);

}

receive_data() {
// read data from networ
// buffer
// increment bspace counter

}



Sliding Window Protocols

 Generalize the protocols to:
◦ Duplex

◦ Piggyback ACK

◦ Set windows at sender and receiver to 
denote valid frames

 Three variants:
◦ A One-Bit Sliding Window Protocol

◦ A Protocol Using Go Back N

◦ A Protocol Using Selective Repeat



One-bit Sliding Window

0

1

0

1

Sender Receiver



Protocol in action



Protocol in action



Performance

Example: 1.0 Gbps link, 15 ms e-e prop. delay, 1KB packet:

Ttransmit = 8kb/pkt
10**9 b/sec

= 8 microsec

 U sender: utilization – fraction of time sender busy 

sending

 1KB pkt every 30 msec -> 33kB/sec thruput over 1 

Gbps link

 network protocol limits use of physical resources!

 

U 
sender 

= 
.008 

30.008 
= 0.00027 

microsec

onds 

L / R 

RTT + L / R 
= 

L (packet length in bits)
R (transmission rate, bps)

=



Pipelined protocols

Pipelining: sender allows multiple, “in-flight”, 

yet-to-be-acknowledged pkts

◦ range of sequence numbers must be increased

◦ buffering at sender and/or receiver

 Two generic forms of pipelined protocols: go-

Back-N, selective repeat



Pipelined Protocols

1

Sender Receiver

2

n-1

0

1

2

m-1

0

Buffers at

the sender and

receiver

Receiver

buffers are

used to hold

out-of-order

packets



Go-Back-N

Sender

Receiver

Receiver

does not

buffer 

out-of-order

packets

Sends “cumulative”

ACKs

Sender buffers

Un ACKd packets

Packet loss causes retransmission

of all Un ACKd packets.

Can be costly with large window 

sizes



Go-Back-N
Sender:

 k-bit seq # in pkt header

 “window” of up to N, consecutive unack’ed pkts allowed

► ACK(n): ACKs all pkts up to, including seq # n - “cumulative ACK”

 may receive duplicate ACKs 

 timer for each in-flight pkt

► timeout(n): retransmit pkt n and all higher seq # pkts in window



GBN in

action



Selective Repeat

 receiver individually acknowledges all 

correctly received pkts

◦ buffers pkts, as needed, for eventual in-order 

delivery to upper layer

 sender only resends pkts for which ACK not 

received

◦ sender timer for each unACKed pkt

 sender window

◦ N consecutive seq #’s

◦ again limits seq #s of sent, unACKed pkts



Selective repeat: sender, receiver windows



Selective repeat

data from above :

 if next available seq # in 

window, send pkt

timeout(n):

 resend pkt n, restart timer

ACK(n) in 
[sendbase,sendbase+N]:

 mark pkt n as received

 if n smallest unACKed pkt, 

advance window base to 

next unACKed seq # 

sender

pkt n in [rcvbase, rcvbase+N-1]

► send ACK(n)

► out-of-order: buffer

► in-order: deliver (also 

deliver buffered, in-

order pkts), advance 

window to next not-yet-

received pkt

pkt n in [rcvbase-N,rcvbase-1]

► ACK(n)

otherwise:

► ignore 

receiver



Selective repeat in action



Selective repeat:

dilemma

Example: 

 seq #’s: 0, 1, 2, 3

 window size=3

 receiver sees no 
difference in two 
scenarios!

 incorrectly passes 
duplicate data as new in 
(a)

Q: what relationship 
between seq # size and 
window size?


