
Intra-Domain Networking

 Planes of the network  Dissemination versus

decision  Dissemination algorithms  Routing

decisions  Distance vector algorithm  RIP

 Link state algorithm  OSPF  Stability issues

Planes of the Network

 “Planes” is one way of categorizing the

functions that go into an operating

network

◦ Data plane: functions at a router that

manipulate the actual packets (e.g.,

forwarding, matching, filtering)

◦ Control plane: network-wide functions that

compute the state that goes into data plane

(e.g., routing)

◦ Management plane: analyze measurement

data to create policies, configuration (e.g.,

traffic engineering, detect and react to DoS)

Planes of the Network..

Routers and other

network

elements

Control plane

Data plane

Management plane

Address matching,

Packet forwarding,

Filtering

Routing

Traffic

engineering

, traffic

matrix

estimation

More on Control Plane

 Routing is one of the key functions of

the control plane

 Divide into two activities

◦ Dissemination – state information is

spread across the network (e.g., link state

information)

◦ Decision – select a path to reach from

point X to point Y on the network (e.g.,

route computation)

Dissemination Algorithms

 What is dissemination?

◦ Spread the some information to the whole

network

 What are the concerns?

◦ Spreading time – how long does it take for

the message to reach everyone?

◦ Number of messages – total overhead as

well as the amount of message processed by

a router

◦ Hotspot creation – can the algorithm create

bottlenecks (can lead to slowdowns or

failures)

Flooding Algorithms

 Routers organized in
a fixed topology

 Communicate along
“direct” links only

 The “initial”
neighbors don’t
change

 Dissemination time is
diameter of the
network

 Message complexity
is (nm); n – nodes,
m – edges;
assuming each node
has a message

Swamping Algorithms

 Flooding algorithms stick
to the “initial” set of
neighbors

 Swamping – neighbors
grow as messages arrive
from distant nodes

 Last iteration – graph is
fully connected

 Dissemination time –
how long it takes to
create a fully connected
graph - (log n)

 Message complexity –
more than n3

 Wasted messages – tell
what machines already
know

Gossiping Algorithms

 Probabilistic
algorithm

 Each node
randomly select k
neighbors and
exchanges
messages

 With high
probability
algorithm
converges
relatively fast

Decision Algorithms

 Decision algorithms operate on the “state”
information aggregated by dissemination
algorithms

 One approach is to interleave (OSPF)

 Another is to do both simultaneously (RIP)

Dissemination

Decision

Routing Information Protocol

 Simple protocol using “Bellman-Ford”

algorithm

 Distributed message-passing type

implementation

Distance Vector Routing

 Consider a simple network

 Each node is identified by its address – e.g., A, B,

....

 Suppose the network is powered up

simultaneously -- “cold start”

◦ the nodes need to remember their addresses

◦ identify the links to which they are attached

A B C

D D

1

6

43

2

5

Distance Vector Routing…

A B C

D E

1

6

43

2

5

From A to Link Cost

A local 0

Src Dst Link Cost

A A local 0

B B local 0

C C local 0

D D local 0

E E local 0

Link number

Table at the initial (power

on state) – shown separately for

clarity

Distance Vector Routing…

A B C

D E

1

6

43

2

5

From A to Link Cost

A local 0

B 1 1

D 3 1

Src Dst Link Cost

A A local 0

B B local 0

C C local 0

D D local 0

E E local 0

Link number

Node (e.g., A) broadcasts its info.

to all others on its links

Others use the info. to enlarge their knowledge

Distance Vector Routing…

A B C

D E

1

6

43

2

5

From A to Link Cost

A local 0

B 1 1

D 3 1

C 1 2

E 1 2

Src Dst Link Cost

A A local 0

B B local 0

C C local 0

D D local 0

E E local 0

Link number

Table at A after convergence

Distance Vector Routing...

What if a link breaks?

 Assume that after the routing tables

have been computed, link 1 suddenly

breaks

A B C

D E

1

6

43

2

5 Link number

Distance Vector Routing...

A B C

D E

1

6

43

2

5 Link number

From A to Link Cost

A local 0

B 1 inf

D 3 1

C 1 inf

E 1 inf

From B to Link Cost

B local 0

A 1 inf

D 1 inf

C 2 1

E 4 1

Distance Vector Routing…

 The distance vector algorithm will

update the routing tables -- A’s routing

table after convergence:

From A to Link Cost

A local 0

B 3 3

D 3 1

C 3 3

E 3 2

Distance Vector Routing…

The Bouncing Effect:
 Assume that link costs are not uniform and

(e.g., link 5 has cost 10, while others 1)

 Assume that link #2 breaks -- this is
immediately noticed by B -- updating the
distance to C to infinity

A B C

D D

1

6

43

2

5

All nodes using this link

to reach C

Distance Vector Routing…

 Suppose before B sends its distance
vectors to neighbors, A sends its own
distance vectors to B and D

 What will happen if B sends its distance
vectors to neighbors first?

Distance Vector Routing…

 The message will have
no effect on D

 B will add 1 to A’s
advertised cost of 2 to
reach C and update its
value to 3 which is lower
than INF

 B advertises this value to
A and E

 Creates a loop: packets
bound to C will reach B
and then bounce back
and forth between B and
A until TTL expires

After another iteration

Distance Vector Routing…

 A “round” of update messages

increase the cost by 2 units when

there is a loop involved

 In this case, the loop will be broken

when the distance between E and C

as given by the routing table exceeds

10

 During the intermediate states -- when

loops occur -- packets will accumulate

and “congest” the corresponding links

Distance Vector Routing…

Counting to Infinity:

 Consider following situation:

◦ link #1 fails -- routing tables updated

◦ link #6 fails -- A & D are isolated from the

other nodes

A B C

D D

1

6

43

2

5

Distance Vector Routing…

 D noticed the link failure and updates its

routing table

 If D transmits its new value to A the

algorithm will converge immediately -- no

problem

Distance Vector Routing…

 If A transmits first its last distance

vector given by

 A: A =0, B = 3, D = 3, C = 3, E = 3 (link

#s shown)

 Table @ D will be updated to:

Distance Vector Routing…

 A loop is created

 Because B, C, and E are isolated -- no

chance to converge to naturally to a

stable state

 At each exchange, distances to B, C,

and E increases by 2

 This process is called -- counting to

infinity -- can be stopped by a

convention that represents a large

distance as infinity

Distance Vector Routing…

Split horizon:

 Bouncing effect and the long time
taken for “counting to infinity” are
undesirable features of distance
vector protocols

 Split horizon is one of the technique to
address this problem

 Idea: if A is routing packets to X via B,
B should not try to reach X through A
◦ A should not announce to B that X is a

short distance away from A

Distance Vector Routing…

 Nodes send different versions updates
on different outgoing links

 Simple form:
◦ nodes omit from messages information about

destination routed on the link

 Split horizon with poisonous reverse:
◦ will include all destinations in the distance

message but will set the corresponding
distance to INF

 Kills loops with two hops but three or
more can exist!

Distance Vector Routing…

 After link failure between D & E,

routing tables at B, C, and E include

following entries:

Distance Vector Routing…

 E notices the failure of the link and

sends an advertisement message on

links 4 and 5 -- distance to D is INF

 Message reaches B but not C (lost)

Distance Vector Routing…

 If C advertises with poisonous reverse

◦ advertise INF distance to E on link 5 and

a distance of 2 on link 2

 B will update its table and advertise

◦ INF on link 2 and distance of 3 on link 4

Distance Vector Routing…

Triggered updates:

 Issue: when to send update to

neighbors?

 Implementations of DV rely on regular

sending of distance vectors

 Triggered updates -- nodes should

send messages as soon as they

notice a change in their routing tables

 Triggered updates can speed up the

loop resolution even when counting to

infinity

RIP Version 1

 RIP is one distance vector protocol

 RIP is an “internal gateway protocol”

(IGP)

◦ used within an autonomous system (AS)

 By default, RIP uses hop count as the

distance between 1 to 15, 16 is INF

 RIP packets are carried over IP/UDP -

- uses UDP port 520 for emission and

reception

RIP Version 1

 Packets are normally sent as broadcasts

 Packets sent every 30 seconds or faster incase of

triggered updates

 If route not refreshed for 180s set to INF

 Message format:

RIP Version 1

RIP processing:

 RIP process on reception of a

response -- updates its routing table

◦ if entry is not present and if received

message is not INF, add it, init the metric

to received value, set next router to

message sender, start timer

RIP Version 1

◦ if entry is present with a larger metric,

update the metric to received value, set

next router to message sender, start timer

◦ if entry is present and next router is

message sender, update metric if it differs

from stored value, restart the timer

Open Shortest Path First

(OSPF)
 Link state protocols are based on a

“distributed map” concept

◦ all nodes have a network map – regularly

updated

 Issues:

◦ how the maps are represented

◦ how updates are “flooded” to the network nodes

◦ why the map updates must be secured

◦ how networks can split and then rejoin

◦ why “shortest path first?”

OSPF…

Principle:

◦ each node maintains a complete copy of the network

map

◦ performs a complete computation of the best routes

from this local map

OSPF…

 Each record has been inserted by one station
that is responsible for it

 If we send a packet from A to C, we rely on
computations by A and B
◦ A send on link #1 to B; B sends on link #2 to C

OSPF…

Flooding Protocol:

 A routing protocol should adapt the routes

according to network changes

 Database should be updated after each change

OSPF…

Flooding algorithm:
◦ receive the message; look record in

database
◦ if record not present – add it to database

– broadcast the message
◦ else if record found & database record #

is lower, replace record with new value –
broadcast msg.

◦ else if record found & database record #
is higher, transmit the database value in a
new message through the incoming
interface

◦ else if both record #s are equal – do
nothing

OSPF…

 After the flooding process following is

the database:

OSPF…

 Bringing up adjacencies:

 Consider the example where we had two failures:

 Failure of link #6 will be detected by D and E

 They can transmit this new information to their
“connected” neighbors only

 After executing the flooding, we have two versions
of the database

OSPF…

 Two databases will evolve differently –
flooding cannot across

 Suppose link #2 fails – one version of
the database (I.e., on in A & D) will not
detect
◦ for routing this is not important – it will be

done correctly

 Suppose link #1 becomes operational:
◦ records describing link #1 will be

corrected

◦ records describing links #2 and #6 may
be incoherent

OSPF…

 It is necessary to ensure that both
sides end up having “aligned”
databases
◦ known as “bringing up adjacencies” in

OSPF
◦ two parties should synchronize and keep

only the most up-to-date version of each
record

 Most records may have similar copies
– inefficient to send the records
◦ data description packets are sent – link

identifiers and version numbers
◦ routers compare their version numbers

and build a “interesting records” packet –
router requests copies of interesting

OSPF…

 In OSPF, we need to protect
distributed routing database against
corruption

 OSPF includes a number of
protections:
◦ flooding procedures include hop-by-hop

ACKs

◦ link state record protected by timers –
removed if not refreshed on time

◦ records are protected by checksum

◦ messages can be authenticated by
password

◦ database description packets are

OSPF…

Why is link state protocol better?

 fast, loopless convergence

 support for precise, if needed multiple

metrics

 support of multiple paths to a

destination

 separate representation of external

routes

OSPF…

Fast loopless convergence:

 “Triggered updates” may not require

more messages than flooding protocol

– but multiple updates may be needed

to correct the routing tables

 Most important is the loopless

property of OSPF

 Loops can cause congestion and

prolong the loop duration  makes

OSPF better

OSPF…

Support for multiple metrics:
 It is difficult for distance vector

protocol to support fine-grained
metrics – it is not impossible!

 In OSPF, it is possible to have fine-
grained variation and also support
several metrics in parallel

 “best route” definition is arbitrary:
◦ largest throughput
◦ lowest delay
◦ lowest cost
◦ best reliability

OSPF…

 Handling different metrics with link

state algorithm requires:

◦ documenting several metrics for each link

◦ computing different routing tables for each

metric

◦ presenting the selected metric in packets

OSPF…

 link #1 – T1 satellite link

 link #2 & #3 – T1 terrestrial links

 link #4 & #5 – 64 kbps terrestrial links

 satellite links have long delays (275 ms) and
terrestrial links have a short delays (10 ms)

OSPF…

 Path D, C, A, B – throughput 1.5 Mbps

and delay 295 ms

 Path D, E, B – throughput 64 Kbps

and delay 20 ms

OSPF…

 When throughput metric is used, D, C,
A, B path is chosen

 When delay metric is used D, E, B
path is chosen

 It is necessary to make consistent
decisions
◦ if D routes a packet to B to C based on

throughput
◦ C should use “throughput” for routing this

packet otherwise it may route it back to D!
– routing loop

◦ solution: packet should indicate what
metric should be used

OSPF…

Multiple paths:

 “Almost equivalent” paths exists for a given

source and destination pair

 Two paths from A to E: one via B and via D

 RIP chooses one arbitrarily because there is

only one next hop entry in the routing table

OSPF…

 Splitting traffic over two paths is more

efficient

 Simple improvement  give us a list

of “shortest paths” to a destination

 Splitting traffic between several paths

has downsides too – e.g., with TCP

flows

◦ packets routed along different paths

◦ can arrive out-of-order at the destination

◦ can trigger retransmissions

OSPF…

External Routes:

 So far only the “internal routes”

problem was considered

 “network” is generally connected

through one or several “external

gateways” to other “networks”

 When there is only one gateway to the

external world – the situation is simple

– have default route

OSPF..

 When there are multiple gateways –

default route solution is very inefficient

◦ it usually picks the nearest external

gateway even though another gateway

would have been quicker to destination

◦ OSPF has “gateway link state records” to

support this

