
Intra-Domain Networking

 Planes of the network  Dissemination versus 

decision  Dissemination algorithms  Routing 

decisions  Distance vector algorithm  RIP

 Link state algorithm  OSPF  Stability issues



Planes of the Network

 “Planes” is one way of categorizing the 

functions that go into an operating 

network

◦ Data plane: functions at a router that 

manipulate the actual packets (e.g., 

forwarding, matching, filtering)

◦ Control plane: network-wide functions that 

compute the state that goes into data plane 

(e.g., routing)

◦ Management plane: analyze measurement 

data to create policies, configuration (e.g., 

traffic engineering, detect and react to DoS) 
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More on Control Plane

 Routing is one of the key functions of 

the control plane

 Divide into two activities

◦ Dissemination – state information is 

spread across the network (e.g., link state 

information)

◦ Decision – select a path to reach from 

point X to point Y on the network (e.g., 

route computation)



Dissemination Algorithms

 What is dissemination?

◦ Spread the some information to the whole 

network

 What are the concerns?

◦ Spreading time – how long does it take for 

the message to reach everyone?

◦ Number of messages – total overhead as 

well as the amount of message processed by 

a router

◦ Hotspot creation – can the algorithm create 

bottlenecks (can lead to slowdowns or 

failures)



Flooding Algorithms

 Routers organized in 
a fixed topology

 Communicate along 
“direct” links only

 The “initial” 
neighbors don’t 
change

 Dissemination time is 
diameter of the 
network

 Message complexity 
is (nm); n – nodes, 
m – edges; 
assuming each node 
has a message



Swamping Algorithms

 Flooding algorithms stick 
to the “initial” set of 
neighbors

 Swamping – neighbors
grow as messages arrive 
from distant nodes

 Last iteration – graph is 
fully connected

 Dissemination time –
how long it takes to 
create a fully connected 
graph - (log n)

 Message complexity –
more than n3

 Wasted messages – tell 
what machines already 
know



Gossiping Algorithms

 Probabilistic 
algorithm

 Each node 
randomly select k 
neighbors and 
exchanges 
messages

 With high 
probability 
algorithm 
converges 
relatively fast



Decision Algorithms

 Decision algorithms operate on the “state” 
information aggregated by dissemination 
algorithms

 One approach is to interleave (OSPF)

 Another is to do both simultaneously (RIP)

Dissemination

Decision



Routing Information Protocol

 Simple protocol using “Bellman-Ford” 

algorithm 

 Distributed message-passing type 

implementation



Distance Vector Routing

 Consider a simple network

 Each node is identified by its address – e.g., A, B, 

....

 Suppose the network is powered up 

simultaneously -- “cold start”

◦ the nodes need to remember their addresses

◦ identify the links to which they are attached
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Distance Vector Routing…

A B C

D E
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From A to Link Cost

A local 0

Src Dst Link Cost

A A local 0

B B local 0

C C local 0

D D local 0

E E local 0

Link number

Table at the initial (power

on state) – shown separately for

clarity



Distance Vector Routing…

A B C

D E
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From A to Link Cost

A local 0

B 1 1

D 3 1

Src Dst Link Cost

A A local 0

B B local 0

C C local 0

D D local 0

E E local 0

Link number

Node (e.g., A) broadcasts its info.

to all others on its links

Others use the info. to enlarge their knowledge



Distance Vector Routing…
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From A to Link Cost

A local 0

B 1 1

D 3 1

C 1 2

E 1 2

Src Dst Link Cost

A A local 0

B B local 0

C C local 0

D D local 0

E E local 0

Link number

Table at A after convergence



Distance Vector Routing...

What if a link breaks?

 Assume that after the routing tables 

have been computed, link 1 suddenly 

breaks
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Distance Vector Routing...

A B C

D E
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5 Link number

From A to Link Cost

A local 0

B 1 inf

D 3 1

C 1 inf

E 1 inf

From B to Link Cost

B local 0

A 1 inf

D 1 inf

C 2 1

E 4 1



Distance Vector Routing…

 The distance vector algorithm will 

update the routing tables -- A’s routing 

table after convergence:

From A to Link Cost

A local 0

B 3 3

D 3 1

C 3 3

E 3 2



Distance Vector Routing…

The Bouncing Effect:
 Assume that link costs are not uniform and 

(e.g., link 5 has cost 10, while others 1)

 Assume that link #2 breaks -- this is 
immediately noticed by B -- updating the 
distance to C to infinity
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All nodes using this link

to reach C



Distance Vector Routing…

 Suppose before B sends its distance 
vectors to neighbors,  A sends its own 
distance vectors to B and D

 What will happen if B sends its distance 
vectors to neighbors first?



Distance Vector Routing…

 The message will have 
no effect on D

 B will add 1 to A’s 
advertised cost of 2 to 
reach C and update its 
value to 3 which is lower 
than INF

 B advertises this value to 
A and E

 Creates a loop: packets 
bound to C will reach B 
and then bounce back 
and forth between B and 
A until TTL expires

After another iteration



Distance Vector Routing…

 A “round” of update messages 

increase the cost by 2 units when 

there is a loop involved

 In this case, the loop will be broken 

when the distance between E and C 

as given by the routing table exceeds 

10

 During the intermediate states -- when 

loops occur -- packets will accumulate 

and “congest” the corresponding links



Distance Vector Routing…

Counting to Infinity:

 Consider following situation:

◦ link #1 fails -- routing tables updated

◦ link #6 fails -- A & D are isolated from the 

other nodes
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Distance Vector Routing…

 D noticed the link failure and updates its 

routing table

 If D transmits its new value to A the 

algorithm will converge immediately -- no 

problem



Distance Vector Routing…

 If A transmits first its last distance 

vector given by

 A: A =0, B = 3, D = 3, C = 3, E = 3 (link 

#s shown)

 Table @ D will be updated to:



Distance Vector Routing…

 A loop is created

 Because B, C, and E are isolated -- no 

chance to converge to naturally to a 

stable state

 At each exchange, distances to B, C, 

and E increases by 2 

 This process is called -- counting to 

infinity -- can be stopped by a 

convention that represents a large 

distance as infinity



Distance Vector Routing…

Split horizon:

 Bouncing effect and the long time 
taken for “counting to infinity” are 
undesirable features of distance 
vector protocols

 Split horizon is one of the technique to 
address this problem

 Idea: if A is routing packets to X via B, 
B should not try to reach X through A
◦ A should not announce to B that X is a 

short distance away from A



Distance Vector Routing…

 Nodes send different versions updates 
on different outgoing links

 Simple form:
◦ nodes omit from messages information about 

destination routed on the link

 Split horizon with poisonous reverse:
◦ will include all destinations in the distance 

message but will set the corresponding 
distance to INF 

 Kills loops with two hops but three or 
more can exist!



Distance Vector Routing…

 After link failure between D & E, 

routing tables at B, C, and E include 

following entries:



Distance Vector Routing…

 E notices the failure of the link and 

sends an advertisement message on 

links 4 and 5 -- distance to D is INF

 Message reaches B but not C (lost)



Distance Vector Routing…

 If C advertises with poisonous reverse

◦ advertise INF distance to E on link 5 and 

a distance of 2 on link 2

 B will update its table and advertise

◦ INF on link 2 and distance of 3 on link 4



Distance Vector Routing…

Triggered updates:

 Issue: when to send update to 

neighbors?

 Implementations of DV rely on regular 

sending of distance vectors

 Triggered updates -- nodes should 

send messages as soon as they 

notice a change in their routing tables

 Triggered updates can speed up the 

loop resolution even when counting to 

infinity



RIP Version 1

 RIP is one distance vector protocol

 RIP is an “internal gateway protocol” 

(IGP)

◦ used within an autonomous system (AS)

 By default, RIP uses hop count as the 

distance between 1 to 15, 16 is INF

 RIP packets are carried over IP/UDP -

- uses UDP port 520 for emission and 

reception



RIP Version 1

 Packets are normally sent as broadcasts

 Packets sent every 30 seconds or faster incase of 

triggered updates

 If route not refreshed for 180s set to INF

 Message format:



RIP Version 1

RIP processing:

 RIP process on reception of a 

response -- updates its routing table

◦ if entry is not present and if received 

message is not INF, add it, init the metric 

to received value, set next router to 

message sender, start timer



RIP Version 1

◦ if entry is present with a larger metric, 

update the metric to received value, set 

next router to message sender, start timer

◦ if entry is present and next router is 

message sender, update metric if it differs 

from stored value, restart the timer



Open Shortest Path First 

(OSPF)
 Link state protocols are based on a 

“distributed map” concept

◦ all nodes have a network map – regularly 

updated

 Issues:

◦ how the maps are represented

◦ how updates are “flooded” to the network nodes

◦ why the map updates must be secured

◦ how networks can split and then rejoin

◦ why “shortest path first?”



OSPF… 

Principle:

◦ each node maintains a complete copy of the network 

map

◦ performs a complete computation of the best routes 

from this local map



OSPF… 

 Each record has been inserted by one station 
that is responsible for it

 If we send a packet from A to C, we rely on 
computations by A and B
◦ A send on link #1 to B; B sends on link #2 to C



OSPF… 

Flooding Protocol:

 A routing protocol should adapt the routes 

according to network changes

 Database should be updated after each change



OSPF… 

Flooding algorithm:
◦ receive the message; look record in 

database
◦ if record not present – add it to database 

– broadcast the message
◦ else if record found & database record # 

is lower, replace record with new value –
broadcast msg.

◦ else if record found & database record # 
is higher, transmit the database value in a 
new message through the incoming 
interface

◦ else if both record #s are equal – do 
nothing



OSPF… 

 After the flooding process following is 

the database:



OSPF… 

 Bringing up adjacencies:

 Consider the example where we had two failures:

 Failure of link #6 will be detected by D and E

 They can transmit this new information to their 
“connected” neighbors only

 After executing the flooding, we have two versions 
of the database



OSPF…

 Two databases will evolve differently –
flooding cannot across

 Suppose link #2 fails – one version of 
the database (I.e., on in A & D) will not 
detect
◦ for routing this is not important – it will be 

done correctly

 Suppose link #1 becomes operational:
◦ records describing link #1 will be 

corrected

◦ records describing links #2 and #6 may 
be incoherent



OSPF…

 It is necessary to ensure that both 
sides end up having “aligned” 
databases
◦ known as “bringing up adjacencies” in 

OSPF
◦ two parties should synchronize and keep 

only the most up-to-date version of each 
record

 Most records may have similar copies 
– inefficient to send the records
◦ data description packets are sent – link 

identifiers and version numbers
◦ routers compare their version numbers 

and build a “interesting records” packet –
router requests copies of interesting 



OSPF…

 In OSPF, we need to protect 
distributed routing database against 
corruption

 OSPF includes a number of 
protections:
◦ flooding procedures include hop-by-hop 

ACKs

◦ link state record protected by timers –
removed if not refreshed on time

◦ records are protected by checksum

◦ messages can be authenticated by 
password

◦ database description packets are 



OSPF…

Why is link state protocol better?

 fast, loopless convergence

 support for precise, if needed multiple 

metrics

 support of multiple paths to a 

destination

 separate representation of external 

routes



OSPF…

Fast loopless convergence:

 “Triggered updates” may not require 

more messages than flooding protocol 

– but multiple updates may be needed 

to correct the routing tables

 Most important is the loopless 

property of OSPF

 Loops can cause congestion and 

prolong the loop duration  makes 

OSPF better



OSPF…

Support for multiple metrics:
 It is difficult for distance vector 

protocol to support fine-grained 
metrics – it is not impossible!

 In OSPF, it is possible to have fine-
grained variation and also support 
several metrics in parallel

 “best route” definition is arbitrary:
◦ largest throughput
◦ lowest delay
◦ lowest cost
◦ best reliability



OSPF…

 Handling different metrics with link 

state algorithm requires:

◦ documenting several metrics for each link

◦ computing different routing tables for each 

metric

◦ presenting the selected metric in packets



OSPF…

 link #1 – T1 satellite link

 link #2 & #3 – T1 terrestrial links

 link #4 & #5 – 64 kbps terrestrial links

 satellite links have long delays (275 ms) and 
terrestrial links have a short delays (10 ms)



OSPF…

 Path D, C, A, B – throughput 1.5 Mbps 

and delay 295 ms

 Path D, E, B – throughput 64 Kbps 

and delay 20 ms



OSPF…

 When throughput metric is used, D, C, 
A, B path is chosen

 When delay metric is used D, E, B 
path is chosen

 It is necessary to make consistent 
decisions
◦ if D routes a packet to B to C based on 

throughput
◦ C should use “throughput” for routing this 

packet otherwise it may route it back to D! 
– routing loop

◦ solution: packet should indicate what 
metric should be used



OSPF…

Multiple paths:

 “Almost equivalent” paths exists for a given 

source and destination pair

 Two paths from A to E: one via B and via D

 RIP chooses one arbitrarily because there is 

only one next hop entry in the routing table



OSPF…

 Splitting traffic over two paths is more 

efficient

 Simple improvement  give us a list 

of “shortest paths” to a destination

 Splitting traffic between several paths 

has downsides too – e.g., with TCP 

flows 

◦ packets routed along different paths

◦ can arrive out-of-order at the destination

◦ can trigger retransmissions



OSPF…

External Routes:

 So far only the “internal routes” 

problem was considered

 “network” is generally connected 

through one or several “external 

gateways” to other “networks”

 When there is only one gateway to the 

external world – the situation is simple 

– have default route



OSPF..

 When there are multiple gateways –

default route solution is very inefficient

◦ it usually picks the nearest external 

gateway even though another gateway 

would have been quicker to destination

◦ OSPF has “gateway link state records” to 

support this


