
Network Applications – Part I

What are network applications?  Classes of 

network applications  Requirements of network 

applications  Peer-to-peer applications 

Multimedia applications

 Real time versus non real time applications 



What are Network Applications?

 Program with distributed components

◦ Connect people – Telephony and instant 

messaging applications 

◦ Data access – Web applications 

◦ Remote processing – Web applets with 

server-side computing

◦ Remote resource control – Remote 

sensing and control (mobile robots)

◦ Distributed processing – High 

performance Grid computing



Classes of Network Applications

 Network apps can be grouped using following parameters

 Symmetry:

◦ Client-Server applications

◦ Peer-to-peer applications

 Communicating:

◦ Dependent (communicating) component apps – distributed components are 
continuously passing messages among them

◦ Independent (non communicating) components – pass few or no messages 
among them (e.g., SETI@Home)

 Granularity:

◦ Fine-grained applications – heavily communicating applications

◦ Coarse-grained applications – loosely communicating applications (low inter-
communication rate)

 Time sensitivity:

◦ Hard real-time – message communications among components have “hard” 
deadlines; missing deadlines can have catastrophic consequences

◦ Soft real-time – missing deadlines degrades performance and reduced the 
user experience but does not create catastrophic consequences

◦ Non real-time – no time based deadlines; want the best possible performance



Requirements of network apps

 Basic requirements (point-to-point 

messaging)

◦ Send messages between end-points 

running components of the apps

◦ Message transmissions subject to certain 

performance requirements

 Maximum desired delay

 Maximum variation in delay

 Minimum bandwidth



Requirements of network...

 Advanced requirements (point-to-

multipoint messaging)

◦ Send messages to multiple components 

of an app (e.g., messaging in 

collaborative computing – whiteboards)

◦ Quality of service and reliability in point-

to-multipoint messaging (harder than in 

point-to-point messaging)



Requirements of network...

 Resource discovery requirements
◦ Often one component needs to discover 

where another component is running to 
initiate a connection

 Discovery can be:
◦ Name-based discovery
 Most common – could be as simple as 

resolving the name to an address

 Names are human friendly – usually 
hierarchical in nature

 E.g., DNS on the Internet



Requirements of network...

 Discovery can be:
◦ Attribute-based discovery
 Give multiple parameters and ask for a 

resource that meets all or most of the 
requirements

 Looking a particular file (given attributes such 
as name, version information, etc)

 UDDI (universal description discovery and 
integration) is a proposed Web-services centric 
discovery mechanism that is attribute capable

 Name-based discovery is easier than 
attribute-based discovery



Resource Discovery Process

 Consider name-based 
discovery

 Once the name-to-
addr binding is done, 
app contacts the 
machine

 How do we 
incorporate “late” 
information (up-to-the 
minute network 
information)?

Ap

p

Resolve

r (Stub)

Discovery query for

RSC

Reply from resolver

RSC at 192.197.12.4

Initiate actual

Connection to

192.197.12.4



Incorporating “Late” Information

 Fail and recover

◦ Fail the application if the information is not 

current enough

◦ Let the full discovery cycle take place again

 Use “late” binding

◦ RSC is used in the connection

◦ Network finds RSC when the connection is 

initiated

◦ Deep packet inspection is one way of doing 

late binding on legacy systems!



P2P file sharing

Example

 Alice runs P2P client 
application on her 
computer

 Intermittently connects 
to Internet; gets new IP 
address for each 
connection

 Asks for file “ABC”

 Application displays 
other peers that have 
copy of ABC

 Alice chooses one of 
the peers, Bob

 File is copied from 
Bob’s PC to Alice’s 
notebook: HTTP

 While Alice downloads, 
other users uploading 
from Alice

 Alice’s peer is both a 
Web client and a 
transient Web server

 All peers are servers = 
highly scalable!



P2P: centralized directory

 original “Napster” design

 1) when peer connects, it 

informs central server:

◦ IP address

◦ content

 2) Alice queries for “ABC”

 3) Alice requests file from 

Bob



P2P: problems with centralized 

directory
 Single point of 

failure

 Performance 

bottleneck

 Copyright 

infringement

 file transfer is 

decentralized, but locating 

content is highly  

centralized



P2P: decentralized directory

 Each peer is either a group 

leader or assigned to a group 

leader.

 Group leader tracks the 

contents in all its children.

 Peer queries group leader; 

group leader may query other 

group leaders.



More on decentralized directory

overlay network

 peers are nodes

 edges between peers and 

their group leaders

 edges between some pairs of 

group leaders

 virtual neighbors

bootstrap node

 connecting peer is either 

assigned to a group leader or 

designated as leader

advantages of approach

 no centralized directory server

◦ location service distributed 

over peers

◦ more difficult to  shut down

disadvantages of approach

 bootstrap node needed

 group leaders can get 

overloaded



P2P: Query  flooding
Gnutella type network

 no hierarchy

 use bootstrap node to learn 

about others

 join message

 Send query to neighbors

 Neighbors forward query

 If queried peer has object, it 

sends message back to querying 

peer

join



P2P: more on query flooding
Pros

 peers have similar 

responsibilities: no group 

leaders

 highly decentralized

 no peer maintains directory 

info

Cons

 excessive query traffic

 query radius: may not  have 

content when present

 bootstrap node (points of 

failure or presence for an 

incoming node)

 maintenance of overlay 

network (need periodic 

message exchanges to 

remove dead nodes from 

overlay)



Structured P2P networks

 Traditional P2P file-sharing systems do 
not operate efficiently
◦ Spend too many messages on constructing 

and maintaining the overlay network

◦ Perform random global searches mostly by 
flooding the network

 One advantage of the traditional scheme 
is that the documents can be placed 
anywhere and the document will be 
found if at least one of the machines 
holding a copy is up and reachable.



Structured P2P networks

 Structured P2P networks (file sharing 
example) has two questions to consider:
◦ How do we map objects onto nodes?

◦ How do we route requests to the node that is 
responsible for the object?

 For the first question, simplest solution just 
uses hashing.

hash(x) -> n

 Where x is the object identifier and n is the 
node identifier onto which the object is 
placed.

 What properties do we need from the hash 
function?



Structured P2P networks

 Problems with traditional hashing:

◦ When nodes join and leave the hashing 

function will be affected

◦ hash(x) { return x % 101 }

◦ Need to know the exact number of hosts 

(in this example, 101)

 To address these issues, structured 

P2P networks use consistent hashing. 



Consistent hashing

 Consistent hashing maps both 

objects and nodes onto a 128-

bit ID space that is organized as 

a circle.

 Hash(object_name) -> objid

 Hash(IP_addr) -> nodeid

 Because the ID space is very 

large, an objid and nodeid would 

not (most likely) coincide.

 Select the node whose id is 

closest in this 128-bit space to 

the object id.



Consistent hashing…

 Like ordinary hashing, distributes objects 
evenly across the nodes. However, unlike 
ordinary hashing, only a small number of 
objects have to move when a node (hash 
bucket) leaves or joins.

 How does a user who wants to access a 
object know which node holds the object?
◦ Each node keeps a complete table of nodes IDs 

and associated IP addresses – search the list for 
the closest node ID and access the node!

◦ Not practical for large networks (i.e., not 
scalable)

◦ Another approach: route the request to the 
appropriate node



Distributed hash tables

 Suppose you are at node 
65a1fc (hex) and trying to locate 
objid d46a1c

◦ Your node does not share 
anything with the target 
object

◦ You know a node that shared 
at least the prefix d – it is 
closer than you to this object

◦ Ask this node to “locate 
object d46a1c” for you

◦ Assuming node d13da3 
knows another node with 
even longer prefix the 
message will be forwarded 
even further



Simplified DHT Example

000

100 101

110

111

011010

001

112

45

567

Hash function – h(x) = x % 8

345

m812

678

m934



Simplified DHT Example

000

100 101

110

111

011010

001

112

45

567

Hash function – h(x) = x % 8

345

678

m812

m934

m812 hold 

data 345

m934 hold 

data 678



Distributed hash tables

 As the message moves 
through the ID space, the 
actual message moves 
through the Internet

 Each node maintains a route 
table as shown here

 Routing table is a 2-D array. 
Has a row for each hex digit in 
the ID (32 rows for a 128-bit 
ID)

 Entry in row i shares a prefix 
of length i with this node – the 
entry in the j-th column has 
hex value j at i+1-th position

 x denotes an unspecified 
suffix

Routing table at 65a1fcx



Distributed hash tables

 Each node maintains a leaf set – these are nodes that are 

numerically closest to the node.

 Leaf node peers with other leaf nodes within the same set 

of leafs. Suppose a leaf node is unable to do some 

operation because of some error condition that work may 

be offloaded onto another leaf node



Distributed hash tables

 Adding a node to overlay is 

much like routing a “locate 

object message”

 New node must at least know 

a member of the P2P network 

(preferable if the closest)

 Learns about other nodes 

through the routing process –

fills out its routing able.

 Existing nodes also update 

their routing tables based on 

new arrivals



Comparison of P2P Approaches

Unstructured P2P 

(Gnutella style)

Unstructured P2P 

(Super peer)

Structured P2P

Join Join process might 

flood to from 

bootstrap nodes to 

find the best join 

node

Group leader for the 

region is the node to 

join with

Search/route

process takes place 

from bootstrap node 

to find the join 

location

Search Could lead to 

flooding the full 

network

Still flooding is 

possible; if group 

leaders have good 

indexing, flooding 

can be reduced to 

leader network

Search is very 

efficient; no flooding; 

Locality Locality is preserved 

on the actual 

network

Locality can be 

preserved easily

Locality only on 

logical space; on 

actual network 

locality can be 

destroyed

Fault tolerance (self 

organizing)

Self organizes well Limited self 

organizing; group

leader placement 

and load balancing is 

Self organizes very 

well



Multimedia Networking 

Applications 
Fundamental 

characteristics:

 Typically delay

sensitive

◦ end-to-end delay

◦ delay jitter

 But loss tolerant: 

infrequent losses cause 

minor glitches 

 Antithesis of data, which 

are loss intolerant but 

delay tolerant

Classes of MM applications:

1) Streaming stored audio 

and video

2) Streaming live audio and 

video

3) Real-time interactive audio 

and video

Jitter is the variability 

of packet delays within 

the same packet stream



Multimedia, Quality of Service: What is it?

Multimedia applications: 

network audio and video

(“continuous media”)

network provides 

application with level of 

performance needed for 

application to function.

QoS



Streaming Stored Multimedia 

Streaming: 

 media stored at source

 transmitted to client

 streaming: client playout begins 

before all data has arrived

 timing constraint for still-to-be transmitted 

data: in time for playout



Streaming Stored Multimedia: 

What is it?

1.  video

recorded

2. video

sent
3. video received,

played out at client

streaming: at this time, client 

playing out early part of video, 

while server still sending later

part of video

network

delay
time



Streaming Stored Multimedia: Interactivity

 VCR-like functionality: client can 

pause, rewind, FF, push slider bar

 10 sec initial delay OK

 1-2 sec until command effect OK

 RTSP often used (more later)

 timing constraint for still-to-be transmitted 

data: in time for playout



Streaming Live Multimedia

Examples:
 Internet radio talk show
 Live sporting event
Streaming
 playback buffer
 playback can lag tens of seconds after 

transmission
 still have timing constraint
Interactivity
 fast forward impossible
 rewind, pause possible!



Interactive, Real-Time Multimedia 

 applications: IP telephony, video 

conference, distributed 

interactive worlds

 end-end delay requirements:
audio: < 150 msec good,  < 400 msec OK

includes application-level (packetization) 

and network delays

higher delays noticeable, impair interactivity

• session initialization
how does callee advertise its IP address, 

port number, encoding algorithms?



Multimedia Over Today’s Internet

TCP/UDP/IP: “best-effort service”

 no guarantees on delay, loss

Today’s Internet multimedia applications 

use application-level techniques to mitigate

(as best possible) effects of delay, loss

But you said multimedia apps requires

QoS and level of performance to be

effective!

?
? ??

?
?

? ?
?

?

?



How should the Internet evolve 

to better support multimedia?
Integrated services philosophy:

 Fundamental changes in 

Internet so that apps can 

reserve end-to-end bandwidth

 Requires new, complex 

software in hosts & routers

Laissez-faire

 no major changes

 more bandwidth when needed

 content distribution, 

application-layer multicast

◦ application layer

Differentiated services 

philosophy:

 Fewer changes to Internet 

infrastructure, yet provide 

1st and 2nd class service.

What’s your opinion?



A few words about audio 

compression
 Analog signal sampled 

at constant rate

◦ telephone: 8,000 
samples/sec

◦ CD music: 44,100 
samples/sec

 Each sample 
quantized, ie, rounded

◦ eg, 28=256 possible 
quantized values

 Each quantized value 
represented by bits

◦ 8 bits for 256 values

 Example: 8,000 

samples/sec, 256 

quantized values --> 

64,000 bps

 Receiver converts it 

back to analog signal:

◦ some quality reduction

Example rates

 CD: 1.411 Mbps

 MP3: 96, 128, 160 kbps

 Internet telephony: 5.3 -

13 kbps



A few words about video 

compression
 Video is sequence of 

images displayed at 

constant rate

◦ e.g. 24 images/sec

 Digital image is array of 

pixels

 Each pixel represented 

by bits

 Redundancy

◦ spacial

◦ temporal

Examples:

 MPEG 1 (CD-ROM) 1.5 

Mbps

 MPEG2 (DVD) 3-6 Mbps

 MPEG4 (often used in 

Internet, < 1 Mbps)

Research:

 Layered (scalable) video

◦ adapt layers to available 

bandwidth



Streaming Stored Multimedia
Application-level streaming 

techniques for making the 

best out of best effort 

service:

◦ client side buffering

◦ use of UDP versus TCP

◦ multiple encodings of 

multimedia

 jitter removal

 decompression

 error concealment

 graphical user interface 

w/ controls for interactivity

Media Player



Internet multimedia: simplest 

approach

audio, video not streamed:

 no, “pipelining,” long delays until playout!

 audio or video stored in file
 files transferred as HTTP 

object
◦ received in entirety at client

◦ then passed to player



Internet multimedia: streaming 

approach

 browser GETs metafile

 browser launches player, passing metafile

 player contacts server

 server streams audio/video to player 



Streaming from a streaming server

 This architecture allows for non-HTTP protocol between 

server and media player

 Can also use UDP instead of TCP.



constant bit 

rate video

transmission

time

variable

network

delay

client video

reception
constant bit 

rate video

playout at client

client playout

delay
b
u
ff
e
re

d

v
id

e
o

Streaming Multimedia:  Client 

Buffering

 Client-side buffering, playout delay compensate 
for network-added delay, delay jitter



Streaming Multimedia:  Client 

Buffering

 Client-side buffering, playout delay compensate 
for network-added delay, delay jitter

buffered

video

variable fill

rate, x(t)

constant

drain

rate, d



Streaming Multimedia: UDP or 

TCP?

UDP 
 server sends at rate appropriate for client (oblivious to network 

congestion !)

◦ often send rate = encoding rate = constant rate

◦ then, fill rate = constant rate - packet loss

 short playout delay (2-5 seconds) to compensate for network delay 

jitter

 error recover: time permitting

TCP
 send at maximum possible rate under TCP

 fill rate fluctuates due to TCP congestion control

 larger playout delay: smooth TCP delivery rate

 HTTP/TCP passes more easily through firewalls



Streaming Multimedia: client 

rate(s)

Q: how to handle different client receive rate 

capabilities?

 28.8 Kbps dialup

 100Mbps Ethernet

A: server stores, transmits multiple copies of 

video, encoded at different rates

1.5 Mbps encoding

28.8 Kbps encoding



Real-time interactive applications

 PC-2-PC phone

◦ instant messaging services 
are providing this

 PC-2-phone

◦ Dialpad

◦ Net2phone

 videoconference with 
Webcams

Going to now look at 

a PC-2-PC Internet 

phone example in 

detail



Interactive Multimedia: Internet 

Phone
Introduce Internet Phone by way of an example

 speaker’s audio: alternating talk spurts, silent 
periods.

◦ 64 kbps during talk spurt

 pkts generated only during talk spurts

◦ 20 msec chunks at 8 Kbytes/sec: 160 bytes data

 application-layer header added to each chunk.

 Chunk+header encapsulated into UDP segment.

 application sends UDP segment into socket every 
20 msec during talkspurt.



Internet Phone: Packet Loss and Delay

 network loss: IP datagram lost due to 
network congestion (router buffer 
overflow)

 delay loss: IP datagram arrives too late for 
playout at receiver
◦ delays: processing, queueing in network; end-

system (sender, receiver) delays

◦ typical maximum tolerable delay: 400 ms

 loss tolerance: depending on voice 
encoding, losses concealed, packet loss 
rates between 1% and 10% can be 
tolerated.



constant bit 

rate

transmission

time

variable

network

delay

(jitter)

client

reception
constant bit 

rate playout

at client

client playout

delay
b
u
ff
e
re

d

d
a
ta

Delay Jitter

 Consider the end-to-end delays of two consecutive 
packets: difference can be more or less than 20 msec



Internet Phone: Fixed Playout

Delay
 Receiver attempts to playout each chunk 

exactly q msecs after chunk was 
generated.
◦ chunk has time stamp t: play out chunk at t+q .

◦ chunk arrives after t+q: data arrives too late for playout, 
data “lost”

 Tradeoff for q:
◦ large q: less packet loss

◦ small q: better interactive experience

 Routers could help. How?



Fixed Playout Delay

packets

time

packets

generated

packets

received

loss

r

p p'

playout schedule

p' - r

playout schedule

p - r

• Sender generates packets every 20 msec during talk spurt.

• First packet received at time r

• First playout schedule: begins at p

• Second playout schedule: begins at p’



SIP

 Session Initiation Protocol
 Comes from IETF
SIP long-term vision
 All telephone calls and video conference 

calls take place over the Internet
 People are identified by names or e-mail 

addresses, rather than by phone 
numbers.

 You can reach the callee, no matter 
where the callee roams, no matter what 
IP device the callee is currently using.



SIP Services
 Setting up  a call

◦ Provides mechanisms for 

caller to let callee know she 

wants to establish a call

◦ Provides mechanisms so 

that caller and callee can 

agree on media type and 

encoding.

◦ Provides mechanisms to 

end call.

 Determine current IP 

address of callee.

◦ Maps mnemonic 

identifier to current IP 

address

 Call management

◦ Add new media streams 

during call

◦ Change encoding during 

call

◦ Invite others 

◦ Transfer and hold calls



Setting up a call to a known IP 

address

• Alice’s SIP invite 

message indicates her 

port number & IP 

address. Indicates  

encoding that Alice 

prefers to receive (PCM 

ulaw)

• Bob’s 200 OK 

message indicates his 

port number, IP address 

& preferred encoding 

(GSM)

• SIP messages can be 

sent over TCP or UDP; 

here sent over 

RTP/UDP.time time

Bob's

terminal rings

Alice

167.180.112.24

Bob

193.64.210.89

port 5060

port 38060

m Law audio

GSM
port 48753

INVITE bob@193.64.210.89c=IN IP4 167.180.112.24m=audio 38060 RTP/AVP 0
port 5060

200 OK

c=IN IP4 193.64.210.89

m=audio 48753 RTP/AVP 3

ACK
port 5060



Setting up a call (more)
 Codec negotiation:

◦ Suppose Bob doesn’t have 

PCM ulaw encoder. 

◦ Bob will instead reply with 

606 Not Acceptable Reply 

and list encoders he can 

use. 

◦ Alice can then send a new 

INVITE message, 

advertising an appropriate 

encoder.

 Rejecting the call

◦ Bob can reject with replies 

“busy,” “gone,” “payment 

required,” “forbidden”.

 Media can be sent over RTP 

or some other protocol.



Example of SIP message

INVITE sip:bob@domain.com SIP/2.0

Via: SIP/2.0/UDP 167.180.112.24

From: sip:alice@hereway.com

To: sip:bob@domain.com

Call-ID: a2e3a@pigeon.hereway.com

Content-Type: application/sdp

Content-Length: 885

c=IN IP4 167.180.112.24

m=audio 38060 RTP/AVP 0

Notes:

 HTTP message syntax

 sdp = session description protocol

 Call-ID is unique for every call.

• Here we don’t know  

Bob’s IP address. 

Intermediate SIP

servers will be 

necessary.

• Alice sends and 

receives SIP messages 

using the SIP default 

port number 506. 

• Alice specifies in Via:

header that SIP client 

sends and receives 

SIP messages over UDP



Name translation and user 

locataion
 Caller wants to call 

callee, but only has 

callee’s name or e-

mail address.

 Need to get IP 

address of callee’s

current host:

◦ user moves around

◦ DHCP protocol

◦ user has different IP 

devices (PC, PDA, car 

device)

 Result can be based on:

◦ time of day (work, home)

◦ caller (don’t want boss to call 

you at home)

◦ status of callee (calls sent to 

voicemail when callee is 

already talking to someone)

Service provided by SIP 

servers:

 SIP registrar server

 SIP proxy server



SIP Registrar

REGISTER sip:domain.com SIP/2.0

Via: SIP/2.0/UDP 193.64.210.89 

From: sip:bob@domain.com

To: sip:bob@domain.com

Expires: 3600

 When Bob starts SIP client, client sends SIP REGISTER 

message to Bob’s registrar server

Register Message:



SIP Proxy

 Alice send’s invite message to her proxy 
server
◦ contains address sip:bob@domain.com

 Proxy responsible for routing SIP messages 
to callee
◦ possibly through multiple proxies.

 Callee sends response back through the 
same set of proxies.

 Proxy returns SIP response message to Alice 
◦ contains Bob’s IP address

 Note: proxy is analogous to local DNS server



Example
Caller jim@umass.edu 

with places a 

call to keith@upenn.edu

(1) Jim sends INVITE

message to umass SIP

proxy. (2) Proxy forwards

request to upenn

registrar server. 

(3) upenn server returns

redirect response,

indicating that it should 

try keith@eurecom.fr

(4) umass proxy sends INVITE to eurecom registrar. (5) eurecom regristrar

forwards INVITE to 197.87.54.21, which is running keith’s SIP client. (6-8) 

SIP response sent back (9) media sent directly 

between clients. 

SIP client

217.123.56.89

SIP client

197.87.54.21

SIP proxy

umass.edu

SIP registrar

upenn.edu

SIP

registrar

eurecom.fr

1

2

3
4

5

6

7

8

9


