
Resource Allocation in

Networks

Resource allocation in networks

 Very much like a resource allocation

problem in operating systems

 How is it different?

◦ Resources and jobs are different

◦ Resources are buffers and link bandwidth

◦ Jobs are flows

 CPU scheduling in OS Packet

scheduling in networks

Resource allocation..

 We can categorize resource allocation

approaches based on implementation

strategies in different ways:

◦ Router based versus Host based

◦ Feedback based versus Reservation

based

◦ Window based versus Rate based

Resource allocation…

 Several approaches presented in the

literature:

◦ Best effort: no commitment about QoS

◦ Better than best effort: services make no

deterministic guarantees about delay, but make a

best effort for supporting QoS

◦ Guaranteed throughput: provides strict QoS

compliance

◦ Bounded delay jitter: service guarantees upper

and lower bounds on observed packet delays

Granularity of Resource Allocation

 Based on the management

granularity, we can classify the

approaches into three classes:

◦ Packet level

◦ Flow level

◦ Flow aggregate level

Packet Level Resource Allocation

 This is mainly concerned with packet

queuing, and packet scheduling at

switches, routers, etc.

 Objective: provide different

treatments at the packet level so that

some flows (applications) will receive

better service

QoS Concerns with Packet

Scheduling

 End-to-end delay is the sum of all the

per hop delays

 End-to-end delay can be bounded by

upper bounding the delay at each hop

QoS concerns..

 Jitter – is the variability of delay. It is a

major concern as well. Why?

constant bit
rate

transmission

time

variable
network

delay
(jitter)

client
reception

constant bit
rate playout

at client

client playout
delay

b
uf

fe
re

d
d
at

a

QoS concerns..

 Packet loss: happens when there is no

more room in the buffers

 Causes for packet loss:

◦ Surge in packet input rate

◦ Congestion downstream

Principles for QOS Guarantees

 Example: 1Mbps IP phone, FTP share 1.5

Mbps link.

◦ bursts of FTP can congest router, cause audio loss

◦ want to give priority to audio over FTP

packet marking needed for router to distinguish
between different classes; and new router policy
to treat packets accordingly

Principle 1

Principles for QOS Guarantees

(more)

 what if applications misbehave (audio sends higher than
declared rate)
◦ policing: force source adherence to bandwidth allocations

 marking and policing at network edge:

provide protection (isolation) for one class from
others

Principle 2

Principles for QOS Guarantees

(more)
 Allocating fixed (non-sharable) bandwidth to

flow: inefficient use of bandwidth if flows doesn’t
use its allocation

While providing isolation, it is desirable to use
resources as efficiently as possible

Principle 3

Principles for QOS Guarantees

(more)
 Basic fact of life: can not support traffic demands

beyond link capacity

Call Admission: flow declares its needs, network may
block call (e.g., busy signal) if it cannot meet needs

Principle 4

Summary of QoS Principles

Let’s next look at mechanisms for achieving this ….

Queuing Disciplines

 Queuing algorithms allocate three

nearly independent quantities:

◦ bandwidth (which packets get transmitted)

◦ promptness (when packets get

transmitted)

◦ buffer space (which packets are discarded

by the gateway)

Queuing Disciplines

 Simplest queuing
algo.:

◦ FCFS (first come first
serve)

◦ order of arrival
determines the
bandwidth,
promptness, and
buffer space
allocations

◦ congestion control
relegated to the
sources

Queuing Disciplines

 FIFO with tail drop
◦ use FIFO scheme

◦ when the buffer space is full, drop the
next packet that arrives at the router

 Problem with FCFS:
◦ single source sending traffic at an

arbitrarily high rate captures a good
portion of the output bandwidth

◦ congestion control may not be fair with ill-
behaved sources

Queuing Disciplines: more
Priority scheduling: transmit highest priority queued

packet

 multiple classes, with different priorities
◦ class may depend on marking or other header info, e.g.

IP source/dest, port numbers, etc..

◦ Real world example?

Queuing Discipline: still more
round robin scheduling:

 multiple classes

 cyclically scan class queues, serving one
from each class (if available)

 real world example?

Scheduling Policies: still more

Weighted Fair Queuing:

 generalized Round Robin

 each class gets weighted amount of

service in each cycle

 real-world example?

Fair Queuing

 Maintain a separate queue for each flow

 Service the queues in a round-robin fashion

 when queue reaches a particular length, additional

packets for the flow are discarded -- flow cannot

increase its share of the bandwidth by increasing flow

rate

Queuing Disciplines

 Pure allocation of round-robin service

◦ provides a fair allocation of packets-sent

◦ due to varying packet sizes, does not

guarantee fair allocation of bandwidth

 Bit-by-bit round-robin (BR)

◦ allocates bandwidth fairly

◦ not very practical -- only a hypothetical

scheme

Bit-by-Bit Vs. Packet-by-Packet

(Equal sized packets

in the buffers)

Bit-by-Bit Vs. Packet-by-Packet…

(Unequal sized packets

in the buffers)

Packet-by Packet Fair Queuing

 Let R(t) denote the number of rounds
made in the round-robin service
discipline up to time t

 A packet of size P whose first bit is
serviced at t0 will have its last bit
serviced after P rounds
◦ at each round one bit of the packet is

serviced

◦ when there are more active flows the time
per round will be longer than with fewer flows

P)t(R)t(R 0

Packet-by Packet Fair Queuing

 Let be the time packet i belonging

to flow arrives at the router

 Let be the starting time of the

packet

 Let be the finishing time of the

packet

 Let be the packet length

 Following relations hold:

α
it

α
iS

α
iP

ααα
iii PSF

))t(RFmax(S i1ii
αα

α

α
iF

For weighted fair queuing, use

/Pi

Packet-by Packet Fair Queuing

 For packet-by-packet approximation:

◦ use in defining the sending order

◦ whenever a packet is finished sending,

the next packet for transmission should be

with the smallest

 Preemptive version:

◦ newly arriving packets with less can

preempt and ongoing packet transmission

-- difficult to analyze analytically

α
iF

α
iF

α
iF

Actual packet

transmission

Weighted Fair Queueing

 Addresses the reality that different

users have different QoS

requirements.

 Weight the queues differently. Some

queues have more weight and others

less.

(weight 1)

(weight 3)

Buffer mgmt. and Packet Drop

 Although FQ provides separate

buffers, it is rarely implemented at

core routers.

 With FIFO/FCFS, we need buffer

management:

◦ Tail drop

◦ Drop on full

◦ Random early drop (RED)

Packet Drop Policies

 Tail Drop

◦ Sets a maximum queue length

◦ Drops all incoming packets after the

queue length has reached maximum

◦ Is simple but has two major drawbacks:

(a) allows a single flow to monopolize and

(b) allows queues to build up to the

maximum size and create prolonged

lower link utilization

Packet Drop Policies…

 Drop on Full:

◦ Can be either random drop on full or drop

front on full.

◦ Both solve the monopolization problem

◦ Does not solve the queue becoming full

problem.

◦ Random early detection (RED) was

proposed to address this problem.

Random Early Detection (RED)

 When there is congestion, buffers fill up and

routers begin to drop packets

 TCP traffic -- goes into slow start -- reduces

the network traffic -- relieves congestion

 Problems:

◦ lost packets should be retransmitted

◦ additional load and significant delays

◦ global synchronization: several TCP flows are

affected by congestion and go into slow start at

the same time

RED

◦ dramatic drop in network traffic -- network

may be underutilized

◦ TCP flows will come out of the slow start

at about the same time -- another burst of

traffic -- this could cause another cycle

 Solution(s):

◦ bigger buffers -- not desirable

◦ predict congestion and inform one TCP

flow at a time to slow down

RED

 Design goals of RED:

◦ congestion avoidance:

 RED is designed to avoid congestion not to

react to it

 must predict the onset of congestion and

maintain network in the efficient region of the

power curve

◦ global synchronization avoidance:

 when onset of congestion is detected, router

must decide which flows to notify to backoff

 notification are implicit (dropping packets)

RED

◦ avoidance of bias against bursty traffic:

 congestion is likely to occur with the arrival of

bursty traffic from one or few sources

 if only packets from bursty flows are selected

for dropping, discard algorithm is biased

against bursty sources

◦ bound on average queue length: RED

should be able to control the average

queue size

RED

 RED performs two functions when

packets come in

◦ compute average queue length avg

◦ this is compared with two thresholds

 less than lower threshold congestion is

assumed to be non existent

 greater than upper threshold congestion is

serious

 between the thresholds, might be onset of

congestion – compute probability Pa. based on

avg

RED

 RED algorithms can be summarized by the

following steps:

RED

 In RED, we would like to space the

discards such that a bursty source

does not get overly penalized

 This is integrated into the computation

of Pa.

◦ compute a probability Pb that changes

from 0 at min threshold to Pmax at max.

threshold

RED

 Above equation gives the fraction of

the critical region – scaling factor

 Instead of using Pb directly, we

compute Pa which is the probability

used to discard

max

max

**

*

PFcount

PF
Pa

1

10 FPFPb max*

count – number of packets sent since the last marking

RED

Traffic Management at Flow Level

 At the flow level, we are concerned

with managing traffic flows to ensure

QoS

 Congestion control algorithms at flow

level can be grouped into:

◦ Open-loop control: (equivalent

reservation-based approaches)

◦ Closed-loop control: (equivalent to

feedback based approaches)

Traffic Management at Flow Level

 Figure below shows throughput with and without

congestion control. Congestion cannot be

addressed by having large network buffers

Open-Loop Traffic Control

 Open-Loop Traffic Control uses the

following building blocks:

◦ Admission control

◦ Policing

◦ Traffic Shaping

Admission Control

 Admission control is meant to determine

whether a request for new connection should be

allowed based on expected resource

requirements.

Policing

 Policing is often implemented by a

leaky bucket regulator

Leaky bucket with water Leaky bucket with packets

“overflowing” packets

can be lost

Policing

 Example leaky bucket policing. Counter
increment 4 packet times, traffic burstiness
allowed 6 packet times

Tag or drop non-conforming packets

Shaping Vs. Policing

 Policing is done on incoming traffic.

Shaping is done on outgoing traffic.

Traffic Shaping

 Traffic shaping can be done in number

of ways

 Using a leaky bucket shaper.

Token Bucket Algorithm

 Let b the bucket size

in bytes

 Let r be the token rate

in bytes/sec

 In time T, b + rT bytes

can pass through

Leaky Vs.

Token

Bucket

(a) Input to a leaky bucket.

(b) Output from a leaky

bucket. Output from a token

bucket with capacities of (c)

250 KB, (d) 500 KB, (e)

750 KB, (f) Output from a

500KB token bucket feeding

a 10-MB/sec leaky bucket.
burst length S; bucket capacity b;

output rate M; token arrival r;

b+Sr = MS -> S = b/(M-r)

Only valid for token bucket

Traffic Shaping…

 Using a token bucket shaper

Allows burst of traffic;

Silent application can

save capacity for the next

burst (does not lose

packets)

Packets can be

discarded; drip rate is

constant;

