
Resource Allocation in

Networks

Resource allocation in networks

 Very much like a resource allocation

problem in operating systems

 How is it different?

◦ Resources and jobs are different

◦ Resources are buffers and link bandwidth

◦ Jobs are flows

 CPU scheduling in OS  Packet

scheduling in networks

Resource allocation..

 We can categorize resource allocation

approaches based on implementation

strategies in different ways:

◦ Router based versus Host based

◦ Feedback based versus Reservation

based

◦ Window based versus Rate based

Resource allocation…

 Several approaches presented in the

literature:

◦ Best effort: no commitment about QoS

◦ Better than best effort: services make no

deterministic guarantees about delay, but make a

best effort for supporting QoS

◦ Guaranteed throughput: provides strict QoS

compliance

◦ Bounded delay jitter: service guarantees upper

and lower bounds on observed packet delays

Granularity of Resource Allocation

 Based on the management

granularity, we can classify the

approaches into three classes:

◦ Packet level

◦ Flow level

◦ Flow aggregate level

Packet Level Resource Allocation

 This is mainly concerned with packet

queuing, and packet scheduling at

switches, routers, etc.

 Objective: provide different

treatments at the packet level so that

some flows (applications) will receive

better service

QoS Concerns with Packet

Scheduling

 End-to-end delay is the sum of all the

per hop delays

 End-to-end delay can be bounded by

upper bounding the delay at each hop

QoS concerns..

 Jitter – is the variability of delay. It is a

major concern as well. Why?

constant bit
rate

transmission

time

variable
network

delay
(jitter)

client
reception

constant bit
rate playout

at client

client playout
delay

b
uf

fe
re

d
d
at

a

QoS concerns..

 Packet loss: happens when there is no

more room in the buffers

 Causes for packet loss:

◦ Surge in packet input rate

◦ Congestion downstream

Principles for QOS Guarantees

 Example: 1Mbps IP phone, FTP share 1.5

Mbps link.

◦ bursts of FTP can congest router, cause audio loss

◦ want to give priority to audio over FTP

packet marking needed for router to distinguish
between different classes; and new router policy
to treat packets accordingly

Principle 1

Principles for QOS Guarantees

(more)

 what if applications misbehave (audio sends higher than
declared rate)
◦ policing: force source adherence to bandwidth allocations

 marking and policing at network edge:

provide protection (isolation) for one class from
others

Principle 2

Principles for QOS Guarantees

(more)
 Allocating fixed (non-sharable) bandwidth to

flow: inefficient use of bandwidth if flows doesn’t
use its allocation

While providing isolation, it is desirable to use
resources as efficiently as possible

Principle 3

Principles for QOS Guarantees

(more)
 Basic fact of life: can not support traffic demands

beyond link capacity

Call Admission: flow declares its needs, network may
block call (e.g., busy signal) if it cannot meet needs

Principle 4

Summary of QoS Principles

Let’s next look at mechanisms for achieving this ….

Queuing Disciplines

 Queuing algorithms allocate three

nearly independent quantities:

◦ bandwidth (which packets get transmitted)

◦ promptness (when packets get

transmitted)

◦ buffer space (which packets are discarded

by the gateway)

Queuing Disciplines

 Simplest queuing
algo.:

◦ FCFS (first come first
serve)

◦ order of arrival
determines the
bandwidth,
promptness, and
buffer space
allocations

◦ congestion control
relegated to the
sources

Queuing Disciplines

 FIFO with tail drop
◦ use FIFO scheme

◦ when the buffer space is full, drop the
next packet that arrives at the router

 Problem with FCFS:
◦ single source sending traffic at an

arbitrarily high rate captures a good
portion of the output bandwidth

◦ congestion control may not be fair with ill-
behaved sources

Queuing Disciplines: more
Priority scheduling: transmit highest priority queued

packet

 multiple classes, with different priorities
◦ class may depend on marking or other header info, e.g.

IP source/dest, port numbers, etc..

◦ Real world example?

Queuing Discipline: still more
round robin scheduling:

 multiple classes

 cyclically scan class queues, serving one
from each class (if available)

 real world example?

Scheduling Policies: still more

Weighted Fair Queuing:

 generalized Round Robin

 each class gets weighted amount of

service in each cycle

 real-world example?

Fair Queuing

 Maintain a separate queue for each flow

 Service the queues in a round-robin fashion

 when queue reaches a particular length, additional

packets for the flow are discarded -- flow cannot

increase its share of the bandwidth by increasing flow

rate

Queuing Disciplines

 Pure allocation of round-robin service

◦ provides a fair allocation of packets-sent

◦ due to varying packet sizes, does not

guarantee fair allocation of bandwidth

 Bit-by-bit round-robin (BR)

◦ allocates bandwidth fairly

◦ not very practical -- only a hypothetical

scheme

Bit-by-Bit Vs. Packet-by-Packet

(Equal sized packets

in the buffers)

Bit-by-Bit Vs. Packet-by-Packet…

(Unequal sized packets

in the buffers)

Packet-by Packet Fair Queuing

 Let R(t) denote the number of rounds
made in the round-robin service
discipline up to time t

 A packet of size P whose first bit is
serviced at t0 will have its last bit
serviced after P rounds
◦ at each round one bit of the packet is

serviced

◦ when there are more active flows the time
per round will be longer than with fewer flows

P)t(R)t(R 0 

Packet-by Packet Fair Queuing

 Let be the time packet i belonging

to flow  arrives at the router

 Let be the starting time of the

packet

 Let be the finishing time of the

packet

 Let be the packet length

 Following relations hold:

α
it

α
iS

α
iP

ααα
iii PSF 

))t(RFmax(S i1ii
αα  

α

α
iF

For weighted fair queuing, use



/Pi

Packet-by Packet Fair Queuing

 For packet-by-packet approximation:

◦ use in defining the sending order

◦ whenever a packet is finished sending,

the next packet for transmission should be

with the smallest

 Preemptive version:

◦ newly arriving packets with less can

preempt and ongoing packet transmission

-- difficult to analyze analytically

α
iF

α
iF

α
iF

Actual packet

transmission

Weighted Fair Queueing

 Addresses the reality that different

users have different QoS

requirements.

 Weight the queues differently. Some

queues have more weight and others

less.

(weight 1)

(weight 3)

Buffer mgmt. and Packet Drop

 Although FQ provides separate

buffers, it is rarely implemented at

core routers.

 With FIFO/FCFS, we need buffer

management:

◦ Tail drop

◦ Drop on full

◦ Random early drop (RED)

Packet Drop Policies

 Tail Drop

◦ Sets a maximum queue length

◦ Drops all incoming packets after the

queue length has reached maximum

◦ Is simple but has two major drawbacks:

(a) allows a single flow to monopolize and

(b) allows queues to build up to the

maximum size and create prolonged

lower link utilization

Packet Drop Policies…

 Drop on Full:

◦ Can be either random drop on full or drop

front on full.

◦ Both solve the monopolization problem

◦ Does not solve the queue becoming full

problem.

◦ Random early detection (RED) was

proposed to address this problem.

Random Early Detection (RED)

 When there is congestion, buffers fill up and

routers begin to drop packets

 TCP traffic -- goes into slow start -- reduces

the network traffic -- relieves congestion

 Problems:

◦ lost packets should be retransmitted

◦ additional load and significant delays

◦ global synchronization: several TCP flows are

affected by congestion and go into slow start at

the same time

RED

◦ dramatic drop in network traffic -- network

may be underutilized

◦ TCP flows will come out of the slow start

at about the same time -- another burst of

traffic -- this could cause another cycle

 Solution(s):

◦ bigger buffers -- not desirable

◦ predict congestion and inform one TCP

flow at a time to slow down

RED

 Design goals of RED:

◦ congestion avoidance:

 RED is designed to avoid congestion not to

react to it

 must predict the onset of congestion and

maintain network in the efficient region of the

power curve

◦ global synchronization avoidance:

 when onset of congestion is detected, router

must decide which flows to notify to backoff

 notification are implicit (dropping packets)

RED

◦ avoidance of bias against bursty traffic:

 congestion is likely to occur with the arrival of

bursty traffic from one or few sources

 if only packets from bursty flows are selected

for dropping, discard algorithm is biased

against bursty sources

◦ bound on average queue length: RED

should be able to control the average

queue size

RED

 RED performs two functions when

packets come in

◦ compute average queue length avg

◦ this is compared with two thresholds

 less than lower threshold congestion is

assumed to be non existent

 greater than upper threshold congestion is

serious

 between the thresholds, might be onset of

congestion – compute probability Pa. based on

avg

RED

 RED algorithms can be summarized by the

following steps:

RED

 In RED, we would like to space the

discards such that a bursty source

does not get overly penalized

 This is integrated into the computation

of Pa.

◦ compute a probability Pb that changes

from 0 at min threshold to Pmax at max.

threshold

RED

 Above equation gives the fraction of

the critical region – scaling factor

 Instead of using Pb directly, we

compute Pa which is the probability

used to discard

max

max

**

*

PFcount

PF
Pa




1

10  FPFPb max*

count – number of packets sent since the last marking

RED

Traffic Management at Flow Level

 At the flow level, we are concerned

with managing traffic flows to ensure

QoS

 Congestion control algorithms at flow

level can be grouped into:

◦ Open-loop control: (equivalent

reservation-based approaches)

◦ Closed-loop control: (equivalent to

feedback based approaches)

Traffic Management at Flow Level

 Figure below shows throughput with and without

congestion control. Congestion cannot be

addressed by having large network buffers

Open-Loop Traffic Control

 Open-Loop Traffic Control uses the

following building blocks:

◦ Admission control

◦ Policing

◦ Traffic Shaping

Admission Control

 Admission control is meant to determine

whether a request for new connection should be

allowed based on expected resource

requirements.

Policing

 Policing is often implemented by a

leaky bucket regulator

Leaky bucket with water Leaky bucket with packets

“overflowing” packets

can be lost

Policing

 Example leaky bucket policing. Counter
increment 4 packet times, traffic burstiness
allowed 6 packet times

Tag or drop non-conforming packets

Shaping Vs. Policing

 Policing is done on incoming traffic.

Shaping is done on outgoing traffic.

Traffic Shaping

 Traffic shaping can be done in number

of ways

 Using a leaky bucket shaper.

Token Bucket Algorithm

 Let b the bucket size

in bytes

 Let r be the token rate

in bytes/sec

 In time T, b + rT bytes

can pass through

Leaky Vs.

Token

Bucket

(a) Input to a leaky bucket.

(b) Output from a leaky

bucket. Output from a token

bucket with capacities of (c)

250 KB, (d) 500 KB, (e)

750 KB, (f) Output from a

500KB token bucket feeding

a 10-MB/sec leaky bucket.
burst length S; bucket capacity b;

output rate M; token arrival r;

b+Sr = MS -> S = b/(M-r)

Only valid for token bucket

Traffic Shaping…

 Using a token bucket shaper

Allows burst of traffic;

Silent application can

save capacity for the next

burst (does not lose

packets)

Packets can be

discarded; drip rate is

constant;

