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INTRODUCTION

To achieve high throughput rates today’s computers
perform several operations simultaneously. Not only
are I/O operations performed concurrently with com-
puting, but also, in multiprocessors, several computing
operations are done concurrently. A major problem in
the design of such a computing system is the connect-
ing together of the various parts of the system (the
I/0O devices, memories, processing units, etc.) in such
a way that all the required data transfers can be ac-
commodated. One common scheme is a high-speed
bus which is time-shared by the various parts; speed of
available hardware limits this scheme. Another scheme
is a cross-bar switch or matrix; limiting factors here are
the amount of hardware (an m X n matrix requires m
X n cross-points) and the fan-in and fan-out of the
hardware.

This paper describes networks that have a fast sort-
ing or ordering capability (sorting networks or sorting
memories). In (3)p(p + 1) steps 2P words can be or-
dered. A sorting network can be used as a multiple-
input, multiple-output switching network. It has the
advantages over a normal crossbar of requiring less
hardware (an n-input n-output switching network can
be built with approximately (§)n(logsn)? elements ver-
sus n? in a normal crossbar) and of having a constant
fan-in and a fan-out requirement on its elements. Thus,
a sorting network should be useful as a flexible means
of tieing together the various parts of a large-scale com-
puting system. Thousands of input and output lines
can be accommodated with a reasonable amount of
hardware.

Other applications of sorting memories are as a
switching network with buffering, a multiaccess mem-
ory, a multiaccess content-addressable memory and as
a multiprocessor. Of course, the networks also may be
used just for sorting and merging.

Comparison elements

The basic element of sorting networks is the com-
parison element (Figure 1). It receives two numbers

over its inputs, A and B, and presents their minimum
on its L output and their maximum on its H output.

A L MIN (A,B)
A’ -+ - - — - — — e — - — - — — — L’
— - B H MAX(A,B)
B’ -+ - - — - — — - - - — - - - = H’
]

Figure 1 - Symbol for a comparison element

If the numbers in and out of the element are trans-
mitted serially most-significant bit first the element
has the state diagram of Figure 2. A reset input places
the element in the A = B state and as long as the
A and B bits agree it remains in this state with its
outputs equal to its inputs. When the A and B bits
disagree the element goes to the A < B or the A > B
state and remains there until the next reset input. In
the A > B state the output H equals the input A and
the output L equals the input B. In the A < B state
the opposite situation occurs.

A=B

Figure 2 - State diagram for a serial comparison element (most-
significant-bit first)

307


Zeben
Highlight

Zeben
Highlight

Zeben
Highlight

Zeben
Highlight

Zeben
Highlight

Zeben
Highlight


308 Spring Joint Computer Conference, 1968

A serial comparison element can be implemented
with 13 NORS and can be put on one integrated cir-
cuit chip. When used in sorting networks each H and L
output will feed an A or B input of another element so
the fan-out is constant regardless of network size; this
fact could be used to simplify the design of the chip.
With several of the currently available logic families
speeds of 100 nanoseconds/bit with a propagation de-
lay from inputs to outputs of 40 nanoseconds are easily
achieved.

Faster operation can be attained by treating sev-
eral bits in parallel in each step with more complex
comparison elements.

Some of the applications described below will re-
quire “bi-directional” comparison elements. Besides
the A and B inputs and the H and L outputs there
are H' and L' inputs and A’ and B’ outputs (see Figure
1). T A> Bthen B'=L"and A’ = H', if A < B then
B' = H'" and A’ = L', otherwise A" and B’ are left
undefined. Information flows from left-to-right over
the solid lines and from right-to-left over the dotted
lines.

Odd-even merging networks

Merging is the process of arranging two
ascendingly-ordered lists of numbers into one
ascendingly-ordered list. Figure 3 shows a symbol for
an “s by t” merging network in which the s numbers of
one ascendingly-ordered list, ai, as, ..., as are presented
over s inputs simultaneously with the t numbers of an-
other ascendingly-ordered list b1, bo, ..., by over another
t inputs. The s + t outputs of the merging network
present the s+t numbers of the merged lists in ascend-
ing order, ¢, ¢, ..., Cst¢-

A “1 by 1”7 merging network is simply one compari-
son element. Larger networks can be built by using the
iterative rule shown in Figure 4. An “s by t” merging
network can be built by presenting the odd-indexed
numbers of the two input lists to one small merging
network (the odd merge), presenting the even-indexed
number to another small merging network (the even
merge) and then comparing the outputs of these small
merges with a row of comparison elements.! The low-
est output of the odd merge is left alone and becomes
the lowest number of the final list. The i* output of
the even merge is compared with the i + 1** output of
the odd merge to form the 2i*" and 2i + 1" numbers of
the final list for all applicable i’s. This may or may not
exhaust all the outputs of the odd and even merges; if
an output remains in the odd or even merge it is left
alone and becomes the highest number in the final list.

'+ S ot

Figure 3- Symbol for an**sby t'" merging network

Appendix A sketches the proof of this iterative rule.
Figure 5 shows a “2 by 2” and a “4 by 4” merging net-
work constructed by this rule.

A “2P by 2P” merging network constructed by this
rule uses p.2P 4+ 1 comparison elements. The longest
path goes through p+1 comparison elements and the
shortest path through one element. Doubling the size
of a merge only increases the longest path by unity so
the merging time increases slowly with the size of the
network.
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Figure 4 - Iterative rule for odd-even merging networks
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Figure 5- Construction of ‘2 by 2'" and **4 by 4"
odd-even merging networks
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Bitonic sorters

Another way of constructing merging networks
from comparison elements is presented here. While
requiring somewhat more elements than the odd-even
merging networks, they have the advantage of flexibil-
ity (one network can accommodate input lists of var-
ious lengths) and of modularity ( a large network can
be split up into several identical modules).?

We will call a sequence of numbers bitonic if it is
the juxtaposition of two monotonic sequences, one as-
cending, the other descending. We also say it remains
bitonic if it is split anywhere and the two parts in-
terchanged. Since any two monotonic sequences can
be put together to form a bitonic sequence a network
which rearranges a bitonic sequence into monotonic or-
der (a bitonic sorter) can be used as a merging network.

Appendix B shows that if a sequence of 2n num-
bers, ay,as,...,a2, is bitonic and if we form the two
n-number sequences:

min(ay, apt1), min(as, apt2), ..., min(a,, as,) (1)
and
max(a, anpt1), max(as, Gpi2), ..., max(an,, az,)  (2)

that each of these sequences is bitonic and no number
of (1) is greater than any number of (2).

This fact gives us the iterative rule illustrated in
Figure 6. A bitonic sorter for 2n numbers can be con-
structed from n comparison elements and two bitonic
sorters for n numbers. The comparison elements form
the sequences (1) and (2) and since each is bitonic they
are sorted by the two n-number bitonic sorters. Since
no number of (1) is greater than any number of (2) the
output of one bitonic sorter is the lower half of the sort
and the output of the other is the upper half.

A bitonic sorter for 2 numbers is simply a compari-
son element and using the iterative rule bitonic sorters
for 2P numbers can be constructed for any p. Figure
7 shows bitonic sorters for 4 numbers and 8 numbers.*
A 2P-number bitonic sorter requires p levels of 2P~!
elements each for a total of p.2P~! elements. It can
act as a merging network for any two input lists whose
total length equals 2P.

Large bitonic sorters can be constructed from a
number of smaller bitonic sorters; for instance, a 16-
number bitonic sorter can be constructed from eight
4-number bitonic sorters, as shown in Fig. 8. This
allows large networks to be built of standard modules

*Readers may recognize the similarity between the topologies of the bitonic sort and the fast-fourier-transform.
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of convenient size.
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Figure 6-lterative rule for bitonic sorters

Sorting networks

A sorter for arbitrary sequences can be constructed
from odd-even merges or bitonic sorters using the well-
known sorting-by-merging scheme: The numbers are
combined two at a time to from ordered lists of length
two; these lists are merged two at a time to form or-
dered lists of length four, etc. until all numbers are
merged into one ordered list.

To sort 2P numbers using odd-even merges requires
2P~ comparison elements followed by 2P~2 “2-by-2”
merging networks followed by 2P~3 “4-by-4” merging
networks, etc,. etc. The longest path will go through
(3)p(p + 1) elements and the shortest path through p
elements. The network requires (p®> — p + 4)2P~2 — 1
comparison elements.

To sort 2P numbers using bitonic sorters requires
($)p(p + 1) levels each with 2P~ elements for (p? +
p)2P~? elements. Each path goes through (3)p(p + 1)
levels.

a AL AL—Cq
%DCBHKBHCZ
by AL AL C3
by B H B H-—Cy
3 AL AL AL cq
B H _BH B H
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&’ BH ~B H B H cy
% AL AL AL %5
2 BHJ BHKBH Co
C
ay AL AL AL 7
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Figure 7- Construction of bitonic sorters for 4 numbers and for
8 numbers
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Figure 8- A 16 number hitonic sorter constructed from eght
4-number bitonic sorters

A sorter of 1024 numbers will have 55 levels and
24,063 elements with odd-even merges or 28,160 el-
ements with bitonic sorters. With a 40 nanosecond
propagation delay per level the total delay is 2.2 mi-
croseconds. Serial transmission of the bits would re-
quire about this much time between successive bits of
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the numbers unless re-clocking occurs within the net-
work. Parallel-input-parallel-output registers of 1024
bits each can be placed between certain levels to per-
form this task or the re-clocking may be incorporated
within each comparison element with a pair of flip-
flops on the outputs. The latter scheme does not add
to the terminal count of the comparison element so
the cost of the added flip-flops on the comparison el-
ement chip is small. One can use any of the familiar
techniques for driving shift registers such as the “A-B”
technique where successive levels are clocked out-of-
phase with each other. With present circuit and wiring
techniques a bit rate of 10 megahertz may be possible
with 50 nanosecond delay per level (2.75 microsecond
delay from input to output of a 1024-word sorter).

With re-clocking in the element and odd-even
merges extra elements are needed to balance the
unequal-length paths. Bitonic sorters do not have
this problem.

Applications

The fast sorting capability of these networks allows
their use in solving other problems where large sets of
data must be manipulated. Some of these applications
are sketched below.

Switching network

A sorting network can connect its input lines to its

output lines with any permutation. The connection is

made by numbering the output lines in order and pre-
senting the desired output address for each input line at
the input. The sorting network sorts the addresses and
in the process makes a connection from each input line
to its desired output line for the transmission of data.
Bi-directional paths will be obtained if bi-directional
comparison elements are used.

An alternative permuting network has been shown
in the recent literature® which has less elements [(p —
1)2P 4+ 1 versus (p?> —p +4)2P~2 — 1 for permuting 27
items] but a more complex set-up algorithm.

Switching network with conflict resolution

The aforementioned switching network assumes
each input wants a unique output line. In many ap-
plications conflicts between inputs occur and must be
resolved by inhibiting conflicting inputs. Figure 9
sketches an m-input, n-output network that performs
this task. Each input line inserts a word containing
the output address desired (or zeroes if the line is in-
active), a control bit equal to 1 and a priority number
into an m-item sorting network with bi-directional el-
ements. This orders the items so input items with the
same output address are grouped together and ordered

by their priority number. The ordered set of m-input
items is merged with a set of n items, each containing
a fixed output address and a control bit equal to 0.
At the right side of the m by n merge the m+n items
are in one ordered list; each address-inserter item will
be directly below any input items with the same ad-
dress. The adjacent word transfer network, looking at
the control bits, connects each address-inserter item to
the input item directly above it if one exists (the in-
put item with lowest priority number is picked in each
case). The elements in the sort and the merge are bi-
directional so two-way paths are formed from input to
output. The adjacent word transfer sends back sig-
nals over each path to signal each input and output
line whether or not a connection has been established.
Data can then be transmitted over each of the con-

nected input lines.
NINPUT LINES | M-I TEM

< SORTING C%?
NETWORK| m

INPUT ITEM
[ DESIRED OUTPUT| 1] PRIORITY]

/ NOUTPUT LINES
CONTROL BIT —)

M BY N
MERGING NETWORK
M+N /ﬁ)
ADJACENT WORD TRANSFER

[ouTPUT ADDRESS| d 0— o
ADDRESS_INSERTER ITEM

ADDRESS INSERTE

Figure 9 - An m-input, n-output switching network with
conflict resolution

Multi-access memory

Re-clocking delays in the comparison elements give
a sorting network some storage capability which can
be augmented if needed with shift registers on the out-
puts. When the output lines are fed back to the input
lines a recirculating self-sorting store is created (Fig-
ure 10). In each recirculation cycle word positions are
changed to keep the memory in order.

Inputs to the memory can be made by breaking the
recirculation paths of some words and inserting new
words. To prevent destroying old information during
input we use the convention that words with all bits
equal to “one” are “empty” and contain no informa-
tion: these will automatically collect at the “high-end”
of memory where input lines can use them to insert new
words.

Outputs from the memory can be accommodated
by reserving the most-significant-bit (MSB) of each
word: “1” for normal words and “0” for words to be
outputted. Words for output will automatically col-
lect at the “low end” of memory where output lines
can read them. Selection of which words to output
is accommodated by reserving the least-significant-bit
(LSB) of each word; “1” for normal words and “0”
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Figure 10 - A multi-access memory

for “output requests”. Logic between adjacent words
causes an output request to affect the word directly
above it.

During one recirculation cycle new words and out-
put requests are entered into memory. During the next
recirculation cycle all words are recirculated with no
new entries. At the end of the cycle the LSB of each
word will proceed the MSB of the same word (no re-
ordering occurs in the second cycle). Output requests
are identified by a “0” in the LSB and for each request
logic performs the following action: if the word above
the request is a normal word (“1” in the LSB) change
its MSB to a “0” and empty the request (change all
its bits to “1” as they fly by), if the word above the
request is another request change the MSB of the first
request to “0”. During the following recirculation cy-
cle the selected words and unfulfilled requests flow to
the low end of memory and are read by output lines.
Because the request itself is outputted if no word is
found, as many outputs as original requests occur. If
the original requests were in order the outputs directly
correspond to them (a second sorting network can put
the original output requests in order).

In use the more-significant part of each word is used
as an address and the rest as data. To request a certain
address an output request is sent in with that address
and zeros for data. The word returned will be at that
address or a higher address if the requested address is
empty.

While a complete cycle may be long in this memory
(50-bit words at 100 nanoseconds/bit = 5 microsec-
onds/recirculation = 10 microseconds/complete cycle)
many inputs and outputs can be accommodated in
each cycle. An effective rate of 100 nanoseconds/word
is achieved with 100 inputs and outputs.

Such a memory could be useful as the “common
memory” of multiprocessors. The self-sorting capabil-
ity could be useful for keeping “task lists” up to date
and performing other housekeeping tasks.

Other uses may be as a message “store and for-
ward” system and as a switching network with buffer-
ing capability. In these uses each output device is given
a unique address which it continually interrogates; in-
put devices send their data to these addresses.

Multi-access content addressable memory

By adding facilities for shifting the bits within the
words in the aforementioned memory different fields
of the words can be brought into the more-significant
positions which govern the ordering of the words. Ad-
dressing can then take place on any part of the words.
As long as the same field positions are being searched
more than one search can be accommodated simulta-
neously.

Multi-processor

By adding processing logic to perform additions,
subtractions, etc., on groups of adjacent words of a
sorting memory one can implement a multi-processor.
The sorting capability is used to transmit operands
between processors. Merely by changing address fields
the multiprocessor can be reconfigured quickly. Such a
multi-processor can keep up with the “dynamic topol-
ogy” of certain real-time problems.

To simplify the processing logic one might use the
same network or another network to perform table
look-up arithmetic. It is possible to have all the pro-
cessors search the same table simultaneously.

SUMMARY

Sorting networks capable of sorting thousands of
items in the order of microseconds can be constructed
with present-day hardware. Such fast sorting capabil-
ity can be used to manipulate large sets of data quickly
and solve some of the communications problems asso-
ciated with large-scale computing systems.

Standard modules of convenient sizes can be picked
and used in any size network to lower the cost. Large-
scale integration can be applied if the problem laying
out the rather complex topology of the network can be
solved. Studies of this problem are being conducted at
Goodyear Aerospace.
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APPENDIX A- SKETCH OF PROOF OF
ITERATIVE RULE FOR ODD-EVEN
MERGING

Let ai,az,as... and bl,bg,b3,... be the two or-
dered input sequences. Let ¢y, ¢a, c3,... be their ordered
merge, dy,d>,ds,... be the ordered merge of their odd-
indexed terms and ej,es,es,... be the ordered merge
of their even-indexed terms.

For a given i let k of the ¢ 4+ 1 terms in d;, d2, ds,...,
d;y1 come from ai,as3,as... and i — k + 1 come from
b1, b3, bs... The term d; 1 is greater than or equal to
k terms from aq, as, as... and therefore is greater than
or equal to 2k — 1 terms of ay,as,as... Similarly it is
greater than or equal to 2i + 1 — 2k terms of by, b, bs,...
and hence 2¢ terms of ¢y, ¢o, c3,... Therefore

div1 > ca; (A1)

Similarly from consideration of the ¢ terms of
e1,€es, es,...,e; the inequality

€; > Co; (A2)

is obtained.  Now consider the 2i + 1 items of

€1,C2,C3,...,C2i+1 and let k come from ay,as,as... and
2i + 1 — k come from by, by, bs,... If k is even we have
that c2;41 is greater than or equal to:

k terms of ai,as,as,-..

(%)k terms of aq,a3,as,...
2i+1—Fk termsof by,bo,bs,...
i+1—(%)k terms of by, b2, bs,...
i+1 termsof dy,ds,ds,...

and similarly cq;41 is greater than or equal to ¢ terms
of ey, e2,€3... 80O

C2i41 > diy1 (A3)

and

(A4)

C2i41 2> €4

If k is odd, (A3) and (A4) still hold.

Since every item of dy, d>, d3... and ey, es, e3... must
appear somewhere in ¢, co,c3... and ¢; < ¢ < c3 <...
inequalities (A1),(A2),(A3) and (A4) imply that

coi = min(dit1,e;) (A5)
and

(A6)

c2ip1 = max(diy1, e;)

APPENDIX B- SKETCH OF PROOF OF
ITERATIVE RULE FOR BITONIC SORTERS

Let ai,az,as, ..., aan be Dbitonic. Let dl =
min(a;, a,+;) and e; = max(a;,a,4;) for 1 < i < n.
We want to prove that di,ds,...,d, and ej,es,...,e,
are each bitonic and

max(dy,ds, ...,dy) < min(ey,ea, ..., ep) (A7)

If a1,as,as,...,as, is split into two parts and the
parts interchanged d;,ds,...,d, and ej,es,...,e, un-
dergo a similar interchange. This does not affect the
bitonic property nor affect (A7) so it is sufficient to
prove the proposition for the case where

a1 <az <az <..<aj1 <a;>aj41 > ... > a,(A8)

is true for some j(1 < j < 2n).

Reversal of the terms of sequences does not affect
the bitonic property nor maximums and minimums so
it is sufficient to assume n < j < 2n.

If a, < as, then a; < apgis0d; = a; and e; = apyyg
for 1 <i < n and the proposition holds.

If a, > asp then from a;_, < a; we can find k
such that j < k < 2n,ap—, < ar and ag—p41 > a1
(the sequence aj,a;t1,aj42, ..., a2y is decreasing while
the sequence a;_n, @j4+1—n,@j42-n, .., Gy i8 increasing)
Then

di = a; }forlgigk—n (A9)
€i = Qij4n
and
di:a””}fork—ngign (A10)
€; = a;
The inequalities
di < digqforl1<i<k-—n. (A11)
di > dipq fork—m<i<n. (A12)
e; < eqfork—mn<i<n, (A13)
en < e, (A14)
ei < eppforl<i<j—n, (A15)
and
e; > epforj—n<i<k-—n, (A16)
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can be shown which prove that di,ds,...,d, and
€1,€2,...,e, are bitonic and max(d;,ds,...,d,) =

max(ag—_n, Gkt1) < min(ag, Gg—nt1 =
min(eq, ez, ..., €p)-
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