Concurrent processing depends on interconnection networks for
communication among processors and memory modules. Various
network topologies and switching strategies are covered here.

A Survey of

Interconnection

Networks

Tse-yun Feng
The Ohio State University

USER'S
PROGRAM
(PARALLEL

LANGUAGE)

TASK
PARTITION
AND
ASSIGNMENT

Figure 1. An overview of concurrent processing systems.

Concurrent processing of data items is considered a
proper approach for significantly increasing processing
speed.! In many real-time applications—such as image
processing and weather computation, which need an in-
struction execution rate of more than one billion floating-
point instructions per second—concurrent processing is
unavoidable. And now, with the advent of LSI technol-
ogy, it is economically feasible to construct a concurrent
processing system by interconnecting hundreds—even
thousands—of off-the-shelf processors and memory
modules.

A basic concurrent processing system is shown in
Figure 1. Processes, generated by compiling and parti-
tioning a user’s program, are assigned to individual pro-
cessors, and an interconnection network implements in-
terprocess communication. A general model of the hard-
ware system is shown in Figure 2. The interconnection
network facilitates communication not only among the »
processors and the m memory modules but also between
the processors and memory modules.

Many interconnection networks have been reviewed in
other surveys.2” In this article we consider interconnec-
tion networks from a practical design viewpoint. We ex-
amine design decisions that are essential in choosing a
cost-effective communication network, survey the var-
ious topologies and communication protocols, and dis-
cuss connection issues related to concurrent processing.

Design decisions

In selecting the architecture of an interconnection net-
work, four design decisions can be identified.!? They con-
cern operation mode, control strategy, switching method,
and network topology.

12 - 0018-9162/81/1200-0012800.75 © 1981 IEEE COMPUTER

Operation mode. Two types of communication can
be identified: synchronous and asynchronous. Synchro-
nous communication is needed for processing in which
communication paths are established synchronously for
either a data manipulating function!! or a data/instruc-
tion broadcast. Asynchronous communication is needed
for multiprocessing in which connection requests are
issued dynamically. A system may also be designed to
facilitate both synchronous and asynchronous process-
ing. Therefore, typical operation modes of interconnec-
tion networks can be classified into three categories: syn-
chronous, asnychronous, and combined.

Control strategy. A typical interconnection network
consists of a number of switching elements and intercon-
necting links. Interconnection functions are realized by
properly setting control of the switching elements. The
control-setting function can be managed by a centralized
controller or by the individual switching element. The lat-
ter strategy is called distributed control; the first strategy
is called centralized control.

Switching methodology. The two major switching
methodologies are circuit switching and packet switching.
In circuit switching, a physical path is actually established
between a source and a destination. In packet switching,
data is put in a packet and routed through the intercon-
nection network without establishing a physical connec-
tion path. In general, circuit switching is much more suit-
able for bulk data transmission, and packet switching is
more efficient for short data messages. Another option,
integrated switching, includes capabilities of both circuit
switching and packet switching. Therefore, three switch-
ing methodologies can be identified: circuit switching,
packet switching, and integrated switching.

Network topology. A network can be depicted by a
graph in which nodes represent switching points and
edges represent communication links. The topologies
tend to be regular and can be grouped into two categories:
static and dynamic. In a static topology, links between

two processors are passive and dedicated buses cannot be
reconfigured for direct connections to other processors.
On the other hand, links in the dynamic category can be
reconfigured by setting the network’s active switching
elements.

The cross product of the set of categories in each de-
sign decision—{operation mode] X {control strategy] x
{switching methodology} x {network topology}—repre-
sents a space of interconnection networks. Obviously, the
cross product contains some uninteresting cases, but a
network designer can obtain a meaningful subspace by
exercising a practical view of engineering technology.

i

Topologies

Network topology is a key faqtor in. determining a
suitable architectural structure, and many topologies
have been considered for telephone switching connec-
tions.!2 Here, we review those proposed or used for con-
nections in tightly coupled multiple-processor systems
(see Figure 3).

INTERCONNECTION NETWORK

Figure 2. Hardware model of concurrent processing
systems.

Figure 3. Topologies of interconnection networks.

December 1981

13

14

Figure 4. Examples of static network toplogies: (a) one dimensional; (b-f) two dimensional; and (g-j) three dimensional.

COMPUTER

Static. Topologies in the static category can be
classified according to dimensions required for layout
—specifically, one-dimensional, two-dimensional, three-
dimensional, and hypercube as shown in Figure 3. Ex-
amples of one-dimensional topologies include the linear
array used for some pipeline architectures (Figure 4a).!3
Two-dimensional topologies include the ring, 415 star, 16
tree,!” near-neighbor mesh,!8 and systolic array.!?® Ex-
amples are shown in Figure 4b-f. Three-dimensional
topologies include the completely connected,!® chordal
ring, 20 3-cube, ! and 3-cube-connected-cycle?? networks
depicted in Figure 4g-j. A D-dimensional, W-wide hyper-
cube contains W nodes in each dimension, and there is a
connection to a node in each dimension. The near-neigh-
bor mesh and the 3-cube are actually two- and three-
dimensional hypercubes, respectively. The cube-con-
nected-cycle is a deviation of the hypercube. For example,
the 3-cube-connected-cycle shown in Figure 4j is obtained

Figure 5. Examples of dynamic network topologies: (a) single stage; (b-i) multistage; and (j) crossbar. (Cont’d on p. 16.)

December 1981

by replacing each node of the 3-cube by a 3-node cycle.
Each node in the cycle is connected to the corresponding
node in another cycle.

Dynamic. There are three topological classes in the
dynamic category: single-stage, multistage, and crossbar
(see Figure 5).

Single-stage. A single-stage network is composed of a
stage of switching elements cascaded to a link connection
pattern. The shuffle-exchange network?? is a single-stage
network based on a perfect-shuffle connection cascaded
to a stage of switching elements as shown in Figure 5a.
The single-stage network is also called a recirculating net-
work because data items may have to recirculate through
the single stage several times before reaching their final
destination.

Multistage. A multistage network consists of more
than one stage of switching elements and is usually capa-

.

%,

-

.

15

.

-

.

. %NWX &M%

-

- Mwmvm%

Figure 5 (cont’d from p.15). Examples of multistage and crossbar (j) dynamic network topologies.

COMPUTER

16

ble of connecting an arbitrary input terminal to an ar-
bitrary output terminal. Multistage networks can be one-
sided or two-sided. The one-sided networks, sometimes
called full switches, have input-output ports on the same
side. The two-sided multistage networks, which usually
have an input side and an output side, can be divided into
three classes: blocking, rearrangeable, and nonblocking.

In blocking networks, simultaneous connections of
more than one términal pair may result in conflicts in the
use of network communication links. Examples of this
type of network, which has been extensively investigated,
include data manipulator,2* baseline,25:26 SW banyan,?’
omega,?® flip,% indirect binary n-cube,’® and delta.?! A
topological equivalence relationship has been established
for this class of networks in terms of the baseline net-
work.25-26 A data manipulator and a baseline network are
shown in Figure 5b and Sc.

A network is called a rearrangeable nonblocking net-
work if it can perform all possible connections between
inputs and outputs by rearranging its existing connections
so that a connection path for a new input-output pair can
always be established. A well-defined network, the Benes
network!2 shown in Figure 5d, belongs to this class. The
Benes rearrangeable network topology has been exten-
sively studied for use in synchronous data permuta-
tion3235 and asynchronous interprocessor communica-
tion.36:37

A network which can handle all possible connections
without blocking is called a nonblocking network. Two
cases have been considered in the literature. In the first
case, the Clos network38 shown in Figure Se, a one-to-one
connection is made between an input and an output. The
other case considers one-to-many connections.3® Here, a
generalized-connection network topology is generated to
pass any of the N mapping of inputs onto outputs where
N is the number of inputs or outputs (see Figure 5f). Ina
one-sided network (or full switch), one-to-one connec-
tion is possible between all pairs of terminals.4®4! A
cellular implementation, a base-line topology construc-
tion, and a Clos construction are shown in Figure 5g-i.

Crossbar. In a crossbar switch every input port can be
connected to a free output port without blocking. Figure
5j shows a schematic which is similar to one used in
C.mmp.*2 A crossbar switch called a versatile line manip-
ulator has also been designed and implemented.43:44

Communication protocols

The switching methodology and the control strategy
are implemented in switching elements (or switching
points) according to required communication protocols.
The communication protocols can be viewed on two lev-
els. The first level concerns switching control algorithms
which generate necessary control settings on switching
elements to ensure reliable data routings from source to
destination. The first-level protocols are referred to as
routing techniques here. The second level is concerned
with the link control procedure that provides the hand-
shaking process among switching points. The handshak-
ing process is a basic function implemented by switching
elements.

December 1981

Reader Service Number 6 »

Routing techniques. The routing techniques depend on
the network topology and the operation mode used. More
or less, each multiple-processor system needs a routing
algorithm. Here, we use several well-defined routing
algorithms for examples.

Near-neighbor mesh. Bitonic sort has been adapted by
several authors**47 for the routing of an nxn mesh-
connected, single instruction-multiple data stream sys-
tem. The procedure developed by Nassimi?’ is as follows:

Procedure SORT (n,n)

1) K—-S~—1
2) WhileK < ndo
a) consider the n X n processor array as com-
posed of many adjacent K x 2K subarrays
b) do in parallel for each K x 2K array
HORIZONTAL_MERGE(K, 2K)
¢c) S-S +1
d) Consider the n X n processor array as
composed of many adjacent 2K x 2K
subarrays
e) do in parallel for each 2K x 2K subarray
VERTICAL_MERGE(_2K, 2K)
f S—S+1;K—~2+K
end

end SORT

The HORIZONTAL_MERGE sorts a bitonic sequence
arranged in two arrays with the increasing sequence on the

TERMINALS FROM TRANSNET

PURCHASE PLAN « 12-24 MONTH FULL OWNERSHIP PLAN « 36 MONTH LEASE PLAN

PURCHASE PER MONTH
DESCRIPTION PRICE 12 M0S. 24 MOS. 36 MOS

LA36 DECwriter ll $1,095 $105 $58 S 40

LA34 DECwriter IV 995 95 53 36
LA34 DECwriter IV Forms Ctrl. .. 1,095 105 58 40
LA120 DECwriter 1 KSR 2,295 220 122 83

LA1200EC'In|erIII RO 2,095 200 112 75
DECscope .. R N

VT100 CRT pe 162 90 61
VT101 CRT DECscope .. 115 67 43
VT125 CRT Graphics . 315 185 119
VT131 CRT DECscope .. 167 98 63

VT132 CRT DECscope K
VT18XAC Personal Computer Option 2,495 240 140 90

T1745 Portable Terminal 1,595 153 85 58
T1765 Bubble Memory Terminal . 2,595 249 138 93
TEXAS Tl Insight 10 Terminal 695 67 37 25

TI785 Portable KSR, 120 CPS. .. 2,395 230 128

86
LEMRLUSUR R 11767 Portable KSR, 120 CPS ... 2845 273 152 102

TIB10 RO Printer 162 90 61

TI820 KSR Printer .. 211 117 80
T Yz
ermmal ...

SLURISCN-UI ADM32 CRT Terminal . . 12 65 42
ADM42 CRT Terminal .. 190 106 72
DT80/1 CRT Terminal .. 162 90 61

Y7\ 1= "W DT80/3 CRT Terminal .. 125 70
DT80/5L APL 15" CRT 20 122 83
920 CRT Terminal 895 86 48 32
TELEVIDEO 950 CRT Terminal | 103 57 39
Letter Quality, 7715R0 2895 278 154 104
LALLM (etter Quality, 7725 KSR ... 3295 316 175 119
2030 KSR Printer 30 CPS 1195 115 67 43
L ILLT N T 2120 KSR Printer 120 CPS .. 185 211 117 80
Executive 80/20 12 15 49

HAZELTINE [rserg iy iy

MX-80 F/T Printer .
MX-100 Printer ...

MICROCOMPUTERS
APPLE « COMMODORE ¢ HP85 » DEC LS! i1

ACCESSORIES AND PERIPHERAL EQUIPMENT
ACOUSTIC COUPLERS » MODEMS « THERMAL PAPER » RIBBONS < INTERFACE MODULES « FLOPPY DiSK UNITS

IEI 1 RANS NE T corporation

1945 ROUTE 22 ION. N.J. 07083 - (201) 688-7800

TWX 710-98

18

S @

12 15 5 1
:‘ }%%i%%: jé

. + +

6 7

o +

11 16

. &

13 12

¥ 3

2 i

VERTICAL

' & 1 | 2| 3| 4
L .

. . 5 6 7 8
.
L “’%ﬁg

e o | 10| 11| 12

13 14 15 16

s

Figure 6. A complete example of sorting a 4 x 4 array.

left array and the decreasing sequence on the right array,
or vice versa. Similarly, the VERTICAL_MERGE sortsa
bitonic sequence arranged in two arrays with the increas-
ing sequence on the upper array and the decreasing se-
quence on the lower array, or vice versa. A complete ex-
ample of sorting a 4 X 4 array is shown in Figure 6. The
order into which a subarray gets sorted is determined by

the' SIGN function, ‘‘+’’ and ‘‘ —’, used during a com-
parison-interchange where ‘‘+’’ is for nondecreasing
order and ‘“ -’ is for nonincreasing order. In Figure 6,

theinitial values given go throughan HM sortontwo 1 X 1
arrays, a VM sort on two 1 X 2 arrays, an HM sort on two
2 x 2 arrays, and finally a VM sort on two 2 X 4 arrays.
Shuffle-exchange network. Both centralized and dis-
tributed routings have been worked out for the shuffle-
exchange network. It has been shown that the shuffle-
exchange network can realize an arbitrary permutation in
3(logyN) — 1 passes where N is the network size.*8 An ex-
ample is shown in Figure 7 for the following permutation:

(0 L2 814y 946 789101112]31415)

14125 7515859513 4 310 61 Oy 521

The control setting developed consists of three matrices,
F, S, and T. Among these three control matrices; S is in-
dependent of the permutation and F and T are modified
matrices obtained by performing some prescribed opera-
tions on the control matrix for the Benes binary network.
The detailed transformation is shown in Wu and Feng.*8
The shuffle-exchange network can also be constructed to
adapt to a distributed control scheme. The construction
can be considered as a sorting network, and the binary
codes of the destination names are used as the values to be
sorted.23:4% Figure 8 illustrates an example for 2" elements
where n = 4. Each of the n% steps in this scheme consists of
a perfect-shuffle followed by simultaneous operations
performed on 27! pairs of adjacent elements. Each of
the latter operations is either ‘‘0’’ (no operation, straight
connection), ¢‘ +’’ (comparator module which sends the
larger value to the lower link), or ‘‘ -’ (a reverse com-
parator module). The sorting proceeds in n stages of n
steps each: during stage s, for s<n, we do n—s steps in
which all operations are ‘‘0’’, followed by s steps in which
the operations consist alternately of 2 ¢+’ followed by
gt 2 for t=1, 2, . .. , 8 Durmg the last stage; all
operations are ‘ +’’.

Data manipulator. A centralized control scheme is de-
signed for implementing data manipulating functions such
as permuting, replicating, spacing, masking, and comple-
menting.!! To implement a data manipulating function,
proper control lines of the six groups (U3, U3, H?, HY,
D%’, D%’) in each column must be properly set through the
use of the control register and the associated decoder. A
“‘duplicate spaced substrings down’’ operation is illus-
trated in Figure 9. The two substrings to be duplicated are
ABand EF. For this operation the control line groups D%’
and H3' or H} and H3 are activated, depending on
whether the control bit is 1 or 0 as determined by substring
length. In this example, the substring is 2; thus, only the
control bit for column 2! has a value of 1, all others are
0’s. Thus, in columns 22and 2%, H?'and H3 are activated,

COMPUTER

and in column 2!, D?' and H?' are activated. With this
control pattern, the substrings can be generated at the
output register.

A distributed control scheme has also been developed
by McMillen and Siegel.*? It uses a routing tag which con-
tains 27 bits and is of the form F = (f5,—1 . . Sfus1 /2
Sn—1- . J1 fo)- The n low-order bits represent the
magnitudes of the route, and the » high-order bits repre-
sent the sign corresponding to the magnitudes. In stage i,
a given switching element examines bits / and n + i of the
routing tag. If f; =0, the straight link is used, regardless of
the value of f, ;. If f; = 1, bit n+i is examined. If
fr4+i=0, the +2'link is used; if f,, ,;= 1, the —2/link is
used. The source processor generates its own routing tag.
For example, in a data manipulator of N=2%, if the
source is 13 and the destination is 6, one possible value for

e

Fis 00000111. The path traversed is straight, +22, +2!,
+20. Multiple paths exist between a source-destination
pair. For example, an alternative routing tag from source
13 to destination 6is (0001 1001). The example is shown in
Figure 10. A general rule to calculate the routing tag is
shown as

DS e WA L2 D bl TR (0205

s L BERGE 20

where S and D are the addresses of the source and the
destination, respectively.

Baseline network. Routing techniques for baseline net-
works described here are also useful for other topological-

Figure 7. An example for universal realization of permutations.48

Figure 8. Sorting with shuffle-exchange. (Adapted from The Art of Computer Programming, Vol. 3: Sorting and Searching by D. E. Knuth;
Addison-Wesley, Reading, Mass., © 1973.)

December 1981

ly equivalent blocking multistage networks.2® Basically,
two types of routing are available: recursive routing and
destination tag routing.2528:5! The recursive routing
algorithm determines the control pattern according to
permutation names. For some permutation, usefulin par-
allel processing, the control pattern can be calculated re-
cursively on the fly as the data pass through the network.
Six categories of such permutations have been identified.
For our purpose, we describe one here and show the recur-
sive routing algorithm. The flip permutation function?®is
described as follows:

F{M (0<k<2"): p(X"®k)=Xand p(X®k)=X"

where X" is the number whose binary representation is the
reverse of X. Let k=2k!+k, and [L;R] denote the

Figure 9. Duplicate spaced substring down on data manipulator.!?

Figure 10. Distributed routing on the data manipulator.

20

cascaded matrix whose left part and right part are L and
R, respectively. Also let ¥ *=1(p) be the 27! bit vector
whose components are all equal to b. The control pattern
K™ of the flip function can then be expressed in terms of
the following recursive formula:
K® (Ffm)y = V7= (kg); K@D (Ffm)),
where
KO F) = (re=D)).

For example, assuming

0 iRy 4158 K64 7

LS 3 Jecal) g 05 6
p can be described by

Ff):p(X’G-) 4)=X.

Accordingly, we have

KO F) = [V2(0); VO©); YO).

Hence

KO(p) =

S O oo
(= =T o R
——

The destination tag routing uses the binary representation
of thedestination as a routing tag. Let the source terminal
link and destination terminal link be 4 and Z, respective-
ly. Also, let the binary representation of Z be
Zp—1Zp—2 - - -Zo. Starting at A, the first node to which 4
is connected is set to switch A to the upper link if z,,_; =0
or the lower link if z, _; = 1. The second node in the path
is again set to switch A to the upper link if z,,_, =0or the
lower link if z,,_, =1. This scheme is continued until we
get the proper destination. For example, in Figure 11,
A=2and Z =11 (i.e., 232,2129=1011). Switching ele-
ment 1 of the left-most stage switches A4 to the lower link
because z3=1. At the next stage, switching element 4
switches A to the upper link because z, = 0. Again, switch-
ing element 4 in the third stage and switching element S in
the right-most stage both switch A to the lower links
because z; =z = 1. If we consider Zas the source and A4 as
the destination, using the binary representation of A as
the routing tag and repeating the same routing procedure
will lead us to choose the same path. This routing tag
algorithm will connect the only path available between a
source and a destination and is extremely suitable for a
distributed control scheme. A conflict resolution
scheme?® has also been developed for implementing
destination tag routing in terms of centralized control.
Benes network. Sequential routing algorithms3452
need O (N logN) steps where Nis the network size. Many
researchers have worked toward improving this time com-

COMPUTER

plexity in terms of parallel processing technique,
heuristic method,3” or recursive. formula.3® Here, we
demonstrate the very basic routing algorithm, called the
looping algorithm. The basic principle, in terms of the
permutation to be realized by the Benes binary network
shown in Figure 5d, is

0 120 d a4 506 7
p:
3 7104350521060 11 1S

The loop algorithm starts recording the permutation,
p, as shown in Figure 12. The two output numbers of a
switching element in the output stage are shown in the
same column, and the two input numbers of a switching
element in the input stage are shown in the same row. We
then choose an arbitrary entry in the chart as a starting
point. For example, electing to start at row 23 and column
01, we then look for a same-row or column entry to forma
loop and, in Figure 12, choose row 23 and column 45. The
process continues until we obtain a loop by re-entering
row 23 and column 01. The loop’s member entries are
then assigned ‘‘a’’ and ‘‘b’’ alternately. The second loop
can be formed in the same way. Then, we assign input and

,output lines named ‘‘@’’ to subnetwork @ and those named
“pb”’ to subnetwork b. The control of the input and output
switching elements must be set as depicted in Figure 13.
This looping algorithm can be applied recursively to the
two subnetworks.

Construction of interconnection networks. Intercon-
nection networks are usually designed so they can be con-
structed of a single type of modular building block called
a switching element. The switching element realizes com-
munication protocols which specify the control strategy
and the switching methodology.

The logic design of switching elements has been ex-
plored in many projects,’*3% including recent LSI im-
plementations.!0:57 Here, we describe in more detail three
designs that have been implemented and are operational.

Flip network 2 x 2 switching element. The flip network
uses centralized control and circuit switching.? The 2 x 2

Figure 11. Distributed routing on a baseline network.

December 1981

switching element can be set by a control line into a direct-
connection or crossed-connection state. Assume that 7,
I;, Oy, Oy, and C represent the two inputs, the two out-
puts, and the switching element control. The switching
element’s output function can be expressed as follows:

00= 6]04— C-Il,and

01=611+C'10

where C =0 means straight connection and C =1 crossed
connection (see Figure 14).

.
e L R - L

Figure 13. Control setting result from the first iteration
of the looping algorithm.

Figure 14. A 2 x 2 switching element.

21

Dimond 2 X 2 switching element. A switching element
with two input and output ports, called Dimond for dual
interconnection modular network device,>® allows modu-
lar construction of interconnection networks. A packet of
messages (containing routing information) arriving at a
Dimond is switched to a designated output port, where it
is stored in a register. Figure 15 shows an implementation
of Dimond which requires one control clock for all inter-
connected switching elements. The central clock has two
phases. In the first clock phase, it is determined which in-
puts have to be copied into which registers. The copy
allowances so determined are stored in four flip-flops:
Coos Co1» Cio, and Cy; (Cy is the allowance for copying
iny into reg;). In addition, output signals of copy
acknowledgments (cacky and cack,), internal control
signals (crossgy, fillp, and fill;) are generated. More
precisely, we have the following:

Cop = creqq - des, - staty - (creq, + des, +, prio) ;
Co1 = creqy - des - stat - (creq, + des, + prio) ;
Cio = creq, - des) - staty - (creqy + desy + prio) ;
Cyi = creq, - des, - stat, - (creqy + desy + prio) ;

COPY 2 x2
ALLOWANCES

CROSSBAR

Figure 15. A 2 x 2 dual interconnecting modular network device—
Dimond58—for packet switching.

Figure 16. Connecting two Dimonds.58

22

Cackg = Cy + Co1 3
Cack, = Cyp + Cy; 5
Cross = Cgy + Cy1 s
Filly =Cyp + Cio ;
Filli =Co '+ Cy ;

where prio is the priority line indicating the index (0,1) of
the input served first in the event of conflict, and desyand
des; are destination lines for iny and in;. In the second
clock phase, two actions are performed concurrently. In-
puts are copied into the output register, if required, and
the status flip-flops, staty and stat, (status of regy and
regy, respectively) are adapted. Precisely, we have the
following:

Filly — regy = cross - ing + cross - iny ;
0 0

Fill;, — reg; =cross - ing + cross - iny ;

Filly - rely — staty =1 ;
rely — staty =0 ;

Fill; - rel] — stat; =1 ;
rely, — stat; =0

The information-available lines are connected to the
status flip-flops:

infag = staty ;

infa, = stat,

The interconnection of two Dimonds is shown in Figure
16, which depicts the relation of handshaking lines.

64 x 64 switching element. A centralized-control and
circuit-switching 64 x 64 versatile data manipulator!! (see
Figure 17) is operating in conjunction with the Staran
computer at the Rome Air Development Center.** The
data manipulator operates under the control of the Staran
computer’s parallel input-output unit. The contents of
the input and output masks, of the address control regis-
ter, and of the input and output control registers, as well
as the data to be manipulated, are entered via the 256-bit
wide PIO buffer interface. The manipulated data leave
the data manipulator via the same interface. The data
manipulator’s instruction repertoire allows one to load
the various address registers and masks and to start and
stop data manipulation. Self-test is performed by loading
address and input-data registers, allowing verification of
correct operation without assistance from the Staran
computer. There are 64 x 64 cells in the basic crossbar cir-
cuit. The output gate of cell (5,/) is controlled by the ith
address control register through a decoder. The decoder
has 64 outputs to control the 64 output gates in a basic-
crossbar-circuit row.

Connection issues for concurrent processing

Two approaches—array processing and multiprocess-
ing—have been tried to provide processing concurrency.

COMPUTER

PIO CONTROL

.

CONTROL
MODULE

SELF TEST
COMPUTER

ICR/0CR
TO ACR

P10 BUFFER

.

ADDRESS
CONTROL

CONVERSION REGISTER

LOGIC

i

Figure 17. Block diagram of a versatile data manipulator.

Since array processors, which consist of multiple process-
ing elements and parallel memory modules under one
control unit, can handle single instructions and multiple
data streams, they are also known as SIMD computers.
Existing examples include Illiac IV and Staran. An overall
SIMD machine organization’® is shown in Figure 18. The
N processing elements, or PEs, are connected by two in-
terconnection networks to the M parallel memory
modules. The control unit in the center provides control
over PEs and memory modules.

Array processors allow explicit expression of parallel-
ism in user programs. The compiler detects the parallel-
ism and generates object code suitable for executionin the
multiple processing elements and the control unit. Pro-
gram segments which cannot be converted into parallel
executable forms are executed in the control unit; pro-
gram segments which can be converted into parallel ex-
ecutable forms are sent to the PEs and executed syn-
chronously on data fetched from parallel memory mod-
ules under the control of the control unit. To enable syn-
chronous manipulation in the PEs, the data are permuted
and arranged in vector form. Thus, to run a program
more efficiently on an array processor, one must develop
a technique for vectorizing the program (or algorithm).
The interconnection network plays a major role in vec-
torization.

The second approach for concurrent processing uses
multiprocessing. The multiprocessor can handle multiple

December 1981

ACR

Figure 18. SIMD model.5®

CABLES AND INTERFACE BOARDS
-

.

.
QUTPUT MASK REGISTER
] .

.

| D
INPUT DATA REGISTER i

INSTRUCTION
DECODING

AND
CONTROL

23

24

instructions and multiple data streams and hence is called
an MIMD processor. Examples of the MIMD architec-
ture include HEP,® data flow processor,®! and flow
model processor.%? A configuration of MIMD architec-
ture®? is shown in Figure 19. The N processing elements
are connected to the M memory modules by an intercon-
nection network. The activities are coordinated by the
coordinator. Unlike the control unit in an array pro-
cessor, the coordinator does not execute object code; it
only implements the synchronization of processes and
smooths out the execution sequence. Again, the compiler
must be designed to partition a computation task and
assign each piece to individual processing elements. Ef-
fective partitioning and assignment are essential for effi-
cient multiprocessing. The criterion is to match memory
bandwidth with the processor processing load, and thein-
terconnection network is a critical factor in this matching.

Below, we address some problems and resultsregarding
therole of the interconnection network in concurrent pro-
cessing.

Combinatorial capability. In array processing, data are
often stored in parallel memory modules in skewed forms
that allow a vector of data to be fetched without
conflict.%3-%5 However, the fetched data must be realigned
in prescribed order before they can be sent to individual
PEs for processing. This alignment is implemented by
permutation functions of the interconnection network,
which also realigns data generated by individual PEs into
skewed form for storage in the memory modules.

In the computer architecture project, one should ques-
tion whether the interconnection network chosen can ef-
ficiently perform the alignment. The rearrangeable net-
work and the nonblocking network can realize every per-
mutation function, but using these networks for align-
ment requires considerable effort to calculate control set-
tings. A recursive routing mechanism has been provided
for a few families of permutations needed for parallel pro-
cessing®’; however, the problem remains for the realization
of general permutations. Many articles*3:31:66:67 concen-
trating on the permutation capabilities of single-stage net-

COORDINATOR

CN
BUFFER

PROCESSORO | guiren

o
PROCESSOR 1 | auFFER

CN

PROCESSOR 2 BUFFER

XIOSAmM=Zz Zo——om=2=Z200

Figure 19. MIMD model.

EM
MOD 520

COMPUTER

works and blocking multistage networks have shown that
these networks cannot realize arbitrary permutations in a
single pass. Recent results show that the baseline network
can realize arbitrary permutations in just two passes’!
while other blocking multistage networks, such as the
omega network, need at least three passes.®® As men-
tioned previously, the shuffle-exchange network can
realize arbitrary permutations in 3(log,N) — 1 passes
where N is the network size.48

Task assignments and reconfiguration. Consider a
parallel program segment using M memory modules and
N processing elements. During execution, data is usually
transferred from memory modules to processing elements
or vice versa. It is also necessary to transfer data among
processing elements for data sharing and synchroniza-
tion. Simultaneous data transfers through the intercon-
nection network, which implements the transfers, may re-
sult in contention for communication links and switching
elements. In case of conflict, some of the data transfers
must be deferred; consequently, throughput decreases
because the processing elements which need the deferred
data cannot proceed as originally expected. To minimize
delays caused by communication conflicts, program
codes must be assigned to proper processing elements and
data assigned to proper memory modules. The assign-
ment of data to memory modules, called mapping,®® has
recently been extended to include assignment of program
modules to processing elements.%°

A configuration concept has been proposed to better
use the interconnection network.3! Under this concept, a
network is just a configuration of another one in the
same, topologically equivalent class.2> To configure a
permutation function as an interconnection network, we
can assign input/output link names in a way that realizes
the permutation function in one conflict-free pass. The
problem of assigning logical names that realize various
permutation functions without conflicts is called a recon-
figuration problem. It has been shown that, through the
reconfiguration process, the baseline network can realize
every permutation in one pass without conflicts.®® This
implies that concurrent processing throughput could be
enhanced by proper assignment of tasks to processing
elements and data to memory modules.

Partitioning. In partitioning—that is, dividing the net-
work into independent subnetworks of different sizes—
each subnetwork must have all the interconnection capa-
bilities of a complete network of the same type and size.
Hence, with a partitionable network, a system can sup-
port multiple SIMD machines. By dynamically recon-
figuring the system into independent SIMD machines and
properly assigning tasks to each partition, we can use
resources more efficiently.

Several authors have noted the importance of parti-
tioning.3% One recent study’ shows that single-stage net-
works, such as the shuffle-exchange and Illiac networks,
cannot be partitioned into independent subnetworks, but
blocking multistage networks, such as the baseline and
data manipulator, can be partitioned.

December 1981

Bandwidth of interconnection networks. The band-
width can be defined as the expected number of requests
accepted per unit time. Since the bus system cannot pro-
vide sufficient bandwidth for a large-scale multiprocessor
system and the crossbar switch is too expensive, it is par-
ticularly interesting to know what kind of bandwidth
various interconnection networks can provide.

The analytic method has been used to estimate band-
width.31.71.72 However, one cannot obtain a closed-form
solution, and the analytic model is sometimes too simpli-
fied. Just for example, one result showed that for a block-
ing multistage interconnection network of size 256 x 256,
the bandwidth is 77 requests (per memory cycle) and for a
crossbar switch of the same size, the bandwidth is 162.
However, the crossbar costs about 20 times as much as the
multistage network, and with buffering (packet switch-
ing), the performance of the multistage network is quite
comparable to the crossbar switch.”!

Numerical simulation, also used to estimate the band-
width,”! can simulate actual PE connection requests by
analyzing the program to be executed. The access con-
flicts in the network and memory modules can be detected
as shown by Wu and Feng.25 Using the simulation meth-
od, Barnes’? concluded that the baseline network is more
than adequate to support connection needs of a proposed
MIMD system which can execute one billion floating-
point instructions per second.

Reliability. Reliable operation of interconnection net-
works is important to overall system performance. The
reliability issue can be thought of as two problems: fault
diagnosis and fault tolerance. The fault-diagnosis prob-
lem has been studied for a class of multistage interconnec-
tion networks constructed of switching elements with two
valid states.”® The problem is approached by generating
suitable fault-detection and fault-location test sets for
every fault in the assumed fault model. The test sets are
then trimmed to a mimimal or nearly minimal set. Detect-
ing a single fault (link fault or switching-element fault) re-
quires only four tests, which are independent of network
size. The number of tests for locating single faults and
detecting multiple faults are also workable.

The second reliability problem mainly concerns the

degree of fault tolerance.” It isimportant to design a net-

work that combines full connection capability with grace-
ful degradation—in spite of the existence of faults. B

Acknowledgment

The author wishes to acknowledge the original con-
tribution of Dr. C. Wu in preparing this article.

References

1. T. Feng, .editor’s introduction, special issue on parallel
processors and processing, Computing Surveys, Vol. 9,
No. 1, Mar. 1977, pp. 1-2.

25

26

11.

12.

13.

14.

1s.

17.

18.

20.

21,

22.

C. V. Ramamoorthy, T. Krishnarao, and P. Jahanian,
“Hardware Software Issues in Multi-Microprocessor
Computer Architecture,”” Proc. First Annual Rocky
Mountain Symp. Microcomputers, 1977, pp. 235-261.

K. J. Thurber, ‘‘Interconnection Networks—A Survey and
Assessment,”” AFIPS Conf. Proc., Vol. 43,1974 NCC, pp.
909-919.

K. J. Thurber, ‘‘Circuit Switching Technology: A State-of-
the-Art Survey,”’ Proc. Compcon Fall 1978, Sept. 1978,
pp. 116-124.

K. J. Thurber and G. M. Masson, Distributed-Processor
Communication Architecture, Lexington Books, Lex-
ington, Mass., 1979, 252 pp.

H. J. Siegel, ‘‘Interconnection Networks for SIMD Ma-
chines,”’ Computer, Vol. 12, No. 6, Junc 1979, pp. 57-66.

H. J. Siegel, R. J. McMillen, and P. T. Mueller, Jr., “A
Survey of Interconnection Methods for Reconfigurable
Parallel Processing Systems,”” AFIPS Conf. Proc., Vol.
48, 1979 NCC, pp. 387-400. ‘

G. M. Masson, G. C. Gingher, and Shinji Nakamura, ‘A
Sampler of Circuit Switching Networks,”” Computer, Vol.
12, No. 6, June 1979, pp. 32-48.

T. Feng and C. Wu, Interconnection Networksin Multiple-
Processor Systems, Rome Air Development Center report,
RADC-TR-79-304, Dec. 1979, 244 pp.

C. Wu and T. Feng, ‘A VLSI Interconnection Network
for Multiprocessor Systems,”’ Digest Compcon Spring
1981, pp. 294-298.

T. Feng, ‘Data Manipulating Functions in Parallel
Processors and Their Implementations,”” IEEE Trans.
Computers, Vol. C-23, No. 3, Mar. 1974, pp. 309-318.

V. Benes, Mathematical Theory of Connecting Networks,
Academic Press, N.Y., 1965.

H. T. Kung, ‘““The Structure of Parallel Algorithms,”’ in
Advances in Computers, Vol. 19, M. C. Yovits, ed.,
Academic Press, N.Y., 1980.

D. J. Farber and K. C. Larson, ¢‘The System Architecture
of the Distributed Computer System—the Communica-
tions System,”’ Proc. Symp. Computer Comm. Networks
and Teletraffic, Brooklyn Polytechnic Press, Apr. 1972,
pp. 21-27.

C.C.Reamesand M. T. Liu, ‘‘A Loop Network for Simul-
taneous Transmission of Variable Length Messages,”
Proc. Second Symp. Computer Architecture, Jan. 1975,
pp. 7-12.

S. 1. Saffer et al., “NODAS—The Net Oriented Data
Acquisition System for the Medical Environment,”” AFIPS
Conf. Proc., Vol. 46, 1977 NCC, pp. 295-300.

J. A. Harris ‘and D. R. Smith, ‘‘Hierarchical Multi-
processor Organization,”’ Proc. Fourth Symp. Computer
Architecture, Mar. 1977, pp. 41-48.

G. H. Barnes et al., “The Illiac IV Computer,”’” IEEE
Trans. Computers, Vol. C-17, No. 8, Aug. 1968, pp.
746-757.

E. M. Aupperle, ‘“MERIT Computer Network: Hardware
Considerations,’’ in Computer Networks, R. Rustin, ed.,
Prentice-Hall, Englewood Cliffs, N.J., 1972, pp. 49-63.

B. W. Arden and H. Lee, ‘‘Analysis of Chordal Ring Net-
work,”’ IEEE Trans. Computers, Vol. C-30, No. 4, April
1981, pp. 291-295.

H. Sullivan, T. R. Bashkow, and K. Klappholz, ‘‘A Large
Scale Homogeneous, Fully Distributed Parallel Machine,’
Proc. Fourth Symp. Computer Architecture, Nov. 1977,
pp. 105-125.

F. P. Preparata and J. Vuillemin, ‘‘The Cube-Connected
Cycles: A Versatile Network for Parallel Computation,”’
Comm. ACM, Vol. 24, No. 5, May 1981, pp. 300-309.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

3s.

36.

37.

38.

39.

40.

41.

42.

43.

H. S. Stone, ‘‘Parallel Processing with the Perfect
Shuffle,”’ IEEE Trans. Computers, Vol. C-20, No. 2, Feb.
1971, pp. 153-161.

T. Feng, Parallel Processing Characteristics and Im-
plementation of Data Manipulating Functions, Rome Air
Development Center report, RADC-TR-73-189, July
1973.

C. Wu and T. Feng, ¢‘On a Class of Multistage Intercon-
nection Networks,”” IEEE Trans. Computers, Vol. C-29,
No. 8, Aug. 1980, pp. 694-702.

C. Wu and T. Feng, ““On a Distributed-Processor Com-
munication Architecture,”” Proc. Compcon Fall 1980, pp.
599-605.

L. R. Goke and G. J. Lipovski, ‘‘Banyan Networks for
Partitioning Multiprocessing Systems,”’ Proc. First An-
nual Computer Architecture Conf., Dec. 1973, pp. 21-28.

D. H. Lawrie, ‘‘Access and Alignment of Data in an Array
Processor,”’ IEEE Trans. Computers, Vol. C-24, No. 12,
Dec. 1975, pp. 1145-1155.

K. E. Batcher, ‘“The Flip Network in STARAN,”’ Proc.
1976 Int’l Conf. Parallel Processing, Aug. 1976, pp. 65-71.

M. C. Pease, ‘‘The Indirect Binary n-Cube Microprocessor
Array,”’ IEEE Trans. Computers, Vol. C-26, No. 5, May
1977, pp. 548-573.

J. H. Patel, ‘‘Processor-Memory Interconnections for
Multiprocessors,”’ Proc. Sixth Annual Symp. Computer
Architecture, Apr. 1979, pp. 168-177.

A. Waksman, ‘‘A Permutation Network,’’ J. ACM, Vol.
9, No. 1, Jan. 1968, pp. 159-163.

A. E. Joel, Jr., “On Permutation Switching Networks,”’
B.S.T.J., Vol. 67, 1968, pp. 813-822.

D. C. Opfermanand N. T. Tsao-Wu, ‘‘On a Class of Rear-
rangeable Switching Networks—Part I: Control Algo-
rithm; Part 1I: Enumeration Studies of Fault Diagnosis,”’
B.S.T.J., 1971, pp. 1579-1618.

J. Lenfant, ‘‘Parallel Permutations of Data: A Benes Net-
work Control Algorithm for Frequently Used Permuta-
tions,”” IEEE Trans. Computers, Vol. C-27, No. 7, July
1978, pp. 637-647.

T. Feng, C. Wu, and D. P. Agrawal, ‘‘A Microprocessor-
Controlled Asynchronous Circuit Switching Network,”’
Proc. Sixth Annual Symp. Computer Architecture, 1979,
pp. 202-215.

Y-C. Chow, R. D. Dixon, T. Feng, and C. Wu, ‘‘Routing
Techniques for Rearrangeable Interconnection Networks,”’
Proc. Workshop on Interconnection Networks, Apr. 1980,
pp. 64-69.

C. Clos, “A Study of Nonblocking Switching Networks,”’
Bell System Tech. J., Vol. 32, 1953, pp. 406-424.

C. D. Thompson,*‘Generalized Connection Networks for
Parallel Processor Intercommunication,”’ IEEE Trans.
Computers, C-27, No. 12, Dec. 1978, pp. 1119-1125.

J. Gecsei, “‘Interconnection Networks from Three-State
Cells,”” IEEE Trans. Computers, Vol. C-26, No. 8, Aug.
1977, pp. 705-711.

Y-C. Chow, R. D. Dixon, and T. Feng, ‘‘An Interconnec-
tion Network for Processor Communication with Opti-
mized Local Connections,’’ Proc. 1980 Int’l Conf. Parallel
Processing, Aug. 1980, pp. 65-74.

W.A. Wulfand C. G. Bell, ¢‘C.mmp—A Multimicropro-
cessor,”” AFIPS Conf. Proc., Vol. 41, 1972 FICC, pp.
765-7717.

T. Feng, The Design of a Versatile Line Manipulator,
Rome Air Development Center report, RADC-TR-73-292,
Sept. 1973.

COMPUTER

44.

45.

46.

47.

48.

49.

50.

51.

52

53.

54.

55.

56.

)

58.

395

60.

61.

62.

63.

W. W. Gaertner, Design, Construction,and Installation of
Data Manipulator, Rome Air Development Center report,
RADC-TR-77-166, May 1977, 80 pp.

S. E. Orcutt, “‘Implementation of Permutations Functions
in an Illiac IV-Type Computer,’’ IEEE Trans. Computers,
Vol. C-25, No. 9, Sept. 1976, pp. 929-936.

C. D. Thompson and H. T. Kung, ‘‘Sorting on a Mesh-
Connected Parallel Computer,”” Comm. ACM, Vol.20,
No. 4, Apr. 1977, pp. 263-271.

D. Nassimi and S. Sahni, ‘‘Bitonic Sort on a Mesh-
Connected Parallel Computer,’’ IEEE Trans. Computers,
Vol. C-28, No. 1, Jan. 1979, pp. 2-7.

C.WuandT. Feng, ‘“‘Universality of the Shuffle-Exchange
Network,”’ IEEE Trans. Computers, Vol. C-30, No. 5,
May 1981.

D. E. Knuth, The Art of Computer Programming, Vol. 3:
Sorting and Searching, Addison-Wesley, Reading, Mass.,
1973.

R. J. McMillen and H. J. Siegel, ‘“MIMD Machine Com-
munication Using the Augmented Data Manipulator Net-
work,”” Proc. Seventh Symp. Computer Architecture,
June 1980, pp. 51-58.

C. WuandT. Feng, ‘‘The Reverse-Exchange Interconnec-
tion Network,”’ IEEE Trans. Computers, Vol. C-29, No.
9, Sept. 1980, pp. 801-811; also Proc. 1979 Int’l Conf.
Parallel Processing, pp. 160-174.

S. Anderson, ‘“The Looping Algorithm Extended to Base
2! Rearrangeable Switching Networks,”” IEEE Trans.

‘Comm., Vol. COM-25, No. 10, Oct. 1977, pp. 1057-1063.

G. Lev, N. Pippenger, and L. G. Valiant, ‘‘A Fast Parallel
Algorithm for Routing in Permutation Networks,”’ /IEEE
Trans. Computers, Vol. C-30, No. 2, Feb. 1981, pp

93-100.

D. H. Lawrie, Memory-Processor Conneciton Networks,
UIUCDCS-R-73-557, University of Ilinois, Urbana, Feb.
1973.

Numerical Aerodynamic Simulation Facility Feasibility
Study, Burroughs Corporation, Mar. 1979.

U. V. Premkuma, R. Kapur, M. Malek, G. J. Lipovski,
and P. Horne, ‘‘Design and Implementation of the Banyan
Interconnection Network in TRAC,’’ AFIPS Conf. Proc.,
Vol. 49, 1980 NCC, pp. 643-653.

M. A. Franklin, ‘‘VLSI Performance Comparison of Ban-
yan and Crossbar Communication Networks,”” IEEE
Trans. Computers, Vol. C-30, No. 4, Apr. 1981, pp
283-290.

P. G. Jansen and J. L. W. Kessels, ““The DIMOND: A
Component for the Modular Construction of Switching
Networks,”’ IEEE Trans. Computers, Vol. C-29, No. 10,
Oct. 1980, pp. 884-889.

D. J. Kuck, ‘‘A Survey of Parallel Machine Organization
and Programming,”” Computing Surveys, Vol. 9, No. 1,
Mar. 1977, pp. 29-59. Also in Proc. 1975 Sagamore Com-
puter Conf. Parallel Processing, pp. 15-39.

B. J. Smith, ‘‘A Pipelined, Shared Resource MIMD Com-
puter,’’ Proc. 1978 Int’l Conf. Parallel Processing, pp. 6-8.

J. B. Dennis, ‘‘Data Flow Supercomputers,’”’ Computer,
Vol. 13, No. 11, Nov. 1980, pp. 48-56.

S. F. Lundstrom and G. Barnes, ‘‘A Controllable MIMD
Architecture,’’ Proc. 1980 Int’l Conf. Parallel Processing,
pp. 19-27.

D. J. Kuck, “ILLIAC IV Software and Application Pro-
gramming,”’ IEEE Trans. on Computers, Vol. C-17, No.
8, Aug. 1968, pp. 758-770.

K. E. Batcher, ‘‘The Multi-Dimensional Access Memory in
STARAN,”’ IEEE Trans. Computers, Vol. C-26, No. 2,
Feb. 1977, pp. 174-177.

December 1981

65. D. H. Lawrie and C. Vora, ‘‘The Prime Memory System
for Array Access,”’ Proc. 1980 Int’l Conf. Parallel Pro-
cessing, pp. 81-87.

66. A. Shimer and S. Ruhman, ‘“Toward a Generalization of
Two- and Three-Pass Multistage, Blocking Interconnec-
tion Networks,”’ Proc. 1980 Int’l Conf. Parallel Process-
ing, pp. 337-346.

67. T. Lang and H. S. Stone, ‘‘A Shuffle-Exchange Network
with Simplified Control,”’ IEEE Trans. Computers, Vol.
C-25, No. 6, Jan. 1976, pp. 55-65.

68. H.T.KungandD. Stevenson, ‘‘A Software Technique for
Reducing the Routing Time on a Parallel Computer with a
Fixed Interconnection Network,”’ in High Speed Com-
puterand Algorithm Organization, Academic Press, N.Y.,
1977, pp. 423-433.

69. C.WuandT. Feng, ‘‘A Software Technique for Enhanc-
ing Performance of a Distributed Computer System,’’
Proc. Compsac 80, Oct. 1980, pp. 274-280.

70. H. J. Siegel, ‘‘The Theory Underlying the Partitioning of
Permutation Networks,”’ IEEE Trans. Computers, Vol.
C-29, No. 9, Sept. 1980, pp. 791-801.

71. D. M. Dias and J. R. Jump, ‘‘Analysis and Simulation of
Buffered Delta Networks,’’ IEEE Trans. Computers, Vol.
C-30, No. 4, Apr. 1981, pp. 273-282.

72. D.A.Padua,D.J. Kuck,and D. H. Lawrie, ‘ ‘High-Speed
Multiprocessors and Compilation Techniques,”’ IEEE
Trans. Computers, Vol. C-29, No. 9, Sept. 1980, pp.
763-776.

73. G. H. Barnes, ‘‘Design and Validation of a Connection
Network for Many-Processor Multiprocessing Systems,”’
Proc. 1980 Int’l Conf. Parallel Processing, pp: 79-80.

74. C.'Wu and T. Feng, ‘‘Fault Diagnosis for a Class of
Multistage Interconnection Networks,”’ Proc. 1979 Int’l
Conf. Parallel Processing, pp. 269-278.

75. J.P.Shenand J. P. Hayes, ‘‘Fault Tolerance of a Class of
Connecting Networks,”’ Proc. Seventh Symp. Computer
Architecture, 1980, pp. 61-71.

Tse-yun Feng is a professor in the Depart-
ment of Computer and Information Sci-
ence, Ohio State University, Columbus.
Previously, he was on the faculty at Wayne
State University, Detroit, and Syracuse
University, New York. He has extensive
technical publications in the areas of asso-
ciative processing, parallel and concurrent
processors, computer architecture, switch-
ing theory, and logic design, and has re-
ceived a number of awards for his technical contributions and
scholarship.

A past president of the IEEE Computer Society (1979-80),
Feng was a distinguished visitor (1973-78), and has served as a
reviewer, panelist, or session chairman for various technical
magazines and conferences. He also initiated the Sagamore
Computer Conference on Parallel Processing and the Interna-
tional Conference on Parallel Processing.

Hereceived the BS degree from the National Taiwan Universi-
ty, Taipei, the MS degree from Oklahoma State University,
Stillwater, and the PhD degree from the University of Michigan,
Ann Arbor, all in electrical engineering.

27

