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Abstract
As an experiment in protocol optimizations, the authors undertook to improve the performance of a
stateless protocol, the User Datagram Protocol (UDP) in the 4.3 BSDUNIX† kernel. Thispaper de-
scribes the successful optimizations that were done along with measurements that show a  UDP per-
formance improvement of between 25% and 35% on CISC and RISC systems, and overall kernel
improvement of between 12% and 18%.

1. Intr oduction

Recent years have seen an impressive series of algorithms and implementation techniques
that have sharply improved software performance of implementations of the Transmission Con-
trol Protocol (TCP).However, when we started the work described in this paper in 1991, none of
these algorithms and techniques had been applied to User Datagram Protocol (UDP).

Applying the optimizations to UDP is interesting for two reasons. First,unlike TCP, UDP is
stateless. Definedin RFC-768 [1], UDP simply adds transport level addressing and an optional
checksum to the Internet Protocol (IP) service of best-effort datagram delivery. Some of work on
optimizing protocols has suggested that more stateful protocols can achieve better performance.
For example, Srinivasan and Mogul showed that by adding state to a Network File System (NFS)
implementation they could achieve a modest performance improvement [2]. Jacobson’s Header
prediction algorithm [3] uses information that TCP must store about the connection state to pre-
dict the next segment that will arrive and optimize the processing of the expected segment. One
interesting research question is whether the optimizations that work for stateful protocols like
TCP also work for stateless protocols like UDP.

Second, UDP is very heavily used in the Internet protocol suite. Applications that use UDP
include the Domain Name System (DNS) [4], the NFS [5], and the Network Time Protocol [6].
Any information about how to improve UDP performance is therefore likely to pay in improved
performance for several important applications.

To experiment with UDP performance, we applied various optimizations to the implementa-
tion of UDP in the 4.3BSD Tahoe release, as ported to the Mach 2.5 operating system running on
a 386 processor. We then applied these optimizations to the UDP implementation in SUN OS
release 4.1.1 running on a Sparc processor. These two systems allowed us to test the impact of
the optimizations on both CISC (386) and RISC (Sparc) processors.

2. An Overview of TCP Performance Optimizations

The first problem in applying the TCP performance optimizations to UDP is determining
which optimizations are TCP-specific and which optimizations could fruitfully be applied to
UDP. This section briefly surveys the work on TCP performance optimization (including work
done concurrently with the work described in this paper) and discusses which optimizations
appear applicable to UDP.

* The work described in this paper was done while Dr. Partridge was on sabbatical from his regular employer, Bolt Be-
ranek and Newman. †UNIX is a trademark of Bell Laboratories.
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The cost of processing a TCP segment has two parts: (1) a per-segment overhead which
does not depend on the size of the data in the segment; and (2) costs incurred in handling the data
in the segment on transmission and reception.

In 1989, Clark, Romkey, Salwen and Jacobson examined a common TCP implementation
and found the per-segment overhead was about 200 instructions for both the sending and receiv-
ing TCP, but noted that Jacobson had an experimental implementation that reduced the receiving
overhead [7]. In subsequent lectures, Jacobson has explained the techniques he used to reduce the
per-segment overhead. First,he observed that, in most circumstances, TCP segments arrive in
order and do not require special handling (e.g., they hav eno out of band data). Based on this
observation, he developed a technique known as as header prediction, which, on TCP input, tests
to see if the inbound segment is the expected segment and, if so, uses an optimized processing
path of less than a dozen lines of code [3]. Jacobson also observed that TCP traffic exhibits con-
siderable locality. The next TCP segment received is highly likely to be destined for the same
application as the last segment. Cachinginformation about the last application (in the form of a
protocol control block or PCB) that received a segment often makes it possible to skip doing an
expensive search or PCB lookup to find out who is to receive the segment. Asubsequent study by
Mogul confirmed that there is substantial locality in TCP and UDP traffic [8]. Furthermore,
McKenney and Dove hav edone an extensive study of algorithms for PCB lookups [9].

The reductions in TCP overhead have made data handling the major cost in TCP processing,
particularly for larger packets. (See,for example, the data in [10]). At minimum, the data in each
TCP segment must be copied between application buffers and the network interface (or vice-
versa) and must be checksummed.However, most implementations do several copies. In 1990,
Clark challenged protocol implementers to reduce the data copies in their code [11], and Jacobson
suggested that building memory-mapped network interfaces would make it possible to reduce the
number of data copies to a single copy [12]. Jacobsonfurther suggested that on RISC processors
it might be possible to effectively eliminate the cost of doing the TCP checksum by fitting the
checksum into the code that copied data between application buffers and the network interface
buffers. Very recently, work by a team at Hewlett-Packard’s Bristol Laboratory has demonstrated
that an interface based on Jacobson’s ideas can achieve extraordinary TCP performance [13,14].

Examining these TCP optimizations from the perspective of trying to apply them to UDP,
we concluded that some optimizations were clearly more promising than others.

Header prediction, which tries to predict the next segment, was clearly not relevant to UDP.
Each UDP datagram stands alone, independent of the ones before or after it. But the general prin-
ciple of locality seemed likely to have some relevance. Indeed,Mogul’s work showed that UDP
demonstrated locality similar to that of TCP. In the optimizations described below, we success-
fully made use of locality to improve UDP performance.

Regarding data related costs, the cost of a data copy would appear to be largely independent
of the protocol used to encapsulate the data. So reducing data copies appeared likely to yield
UDP improvements similar to those reported for TCP. Rolling the checksum into the copy code
was a problematic performance improvement, since UDP permits applications to turn off the
checksum if they wish. Inour work, we experimented with rolling the checksum and copy loops
together. At the end of this paper some of the issues related to the checksum are discussed.

3. A Sketch of the 4.3 Tahoe UDP Code

We started by optimizing the 4.3 BSD Tahoe release code, as ported to the Mach 2.5 operat-
ing system. We later applied the optimizations to SUN OS release 4.1.1. The differences
between the original Tahoe release and the Mach release are sufficiently minor that they need not
be discussed.What follows is a sketch of the Tahoe UDP code. The important differences
between the Tahoe code and SUN code are described at the end of this section. Descriptions of
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special features of the BSD code, which were not essential to the optimization, have been left out.
See [15] for a more detailed discussion.
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3.1. SendingCode

An application that wishes to send a UDP datagram can use of one of four system calls:

• sendto(s,msg,msglen,flags,to,tolen). Sendto sends the given message (msg) to
the specified destination address (to) on a pre-allocated UDP socket (s).

• send(s,msg,msglen,flags). In the BSD system, it is possible to fix the remote
address to which all UDP datagrams will be sent, using theconnect system call.For
UDP sockets which have been connected, thesend call is simply a variant of the
sendto call, without the destination parameters.

• sendmsg(s,msg_str uct,flags). Sendmsg is another variant of thesendto call,
which provides a scatter-gather IO interface. Themsg_str uct parameter contains an
array specifying where the various pieces of the message lie in the application’s mem-
ory. The kernel gathers the various pieces into a single message and sends it.
Sendmsg can be used with either connected or unconnected sockets. Whensending
over an unconnected socket, the destination address also must be placed in
msg_str uct.

• wr ite(s,msg,msglen). Wr ite is the standard UNIX® system call for writing to a file
or socket and, for sockets, behaves just likesend.

Once in the kernel, all four system calls package their arguments into a standard form and call a
common sending routine,sendit. Sendit confirms that the arguments are valid (for example,
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confirming that the memory addresses to copy are within the application’s memory space), and
then callssosend.

Sosend is the start of real protocol processing.Sosend copies the user data into a buffer
chain in kernel memory and passes the data down to the appropriate transport protocol. If the
transport protocol is not ready to accept the data due to flow control, sosend suspends, waiting
for space to become available. Notethat for a protocol like UDP, which has no flow control, all
sosend does is copy the user data into the kernel and call the transport protocol.

Sosend calls the transport protocol using a protocol switch table. Each transport protocol
has a protocol switch entry which includes basic information about the protocol (such as whether
a connection must be established before sending), and definitions for nine protocol entry points.
All communication with the transport protocol is made by calling one of the nine entry points.

Sosend always calls theusrreq entry point, the entry point that handles most application
system calls (‘‘user requests’’), with the instruction to send a certain amount of data (the data is
passed as an argument). Internally, a protocol’s usrreq routine typically does some very basic
parameter checking and then calls an appropriate subroutine to handle the system call.For UDP,
the routine to handle sending UDP datagrams isudp_output.

Udp_output is passed a socket-specific protocol control block (PCB), a buffer chain con-
taining the data to be sent, and the destination address. The protocol control block contains the
UDP-specific information for the socket on which the data is being sent.Udp_output prepends
the UDP header and a template of the IP header, performs the UDP checksum, and calls IP, via
ip_output to send the datagram.

Ip_output fills in the IP header left unfilled byudp_output, looks up a route for the data-
gram, fragments the IP datagram if it is too large for the outbound interface, checksums the IP
header, and calls the appropriate interface device driver to send the IP datagram.

3.2. Receiving Code

The receiving code has a somewhat simpler structure than the sending code.

Upon receiving an IP datagram, a network interface places the datagram on the IP input
queue and sets a software interrupt for the IP input routine,ipintr. When interrupted,ipintr
removes datagrams from the input queue, checks the IP header and datagram length for validity,
and, if the datagram is destined for one of the host’s addresses, does IP reassembly (if required),
and passes the IP datagram up to the transport protocol, using thepr_input routine in the trans-
port protocol’s protocol switch entry.

UDP’s input routine isudp_input. Udp_input checks the UDP header for errors and if the
datagram is valid, uses the UDP header and the IP header information to locate the appropriate
socket to receive the UDP data. If a socket exists to receive the data,udp_input callssbappen-
daddr (socket buffer append, with address) to append the data in the UDP datagram, plus the
source address of the application that sent the datagram, onto the socket’s read buffer.

Applications read from a socket’s read buffer using one of four system calls:

• recvfrom(s,buf,buflen,flags,from,fromlen).Recvfrom reads from the given socket
into the buffer (buf) until either the buffer has been filled, or an entire datagram has
been read.If a partial datagram is read, the kernel discards the remainder of the data-
gram. Theaddress of the sending application is placed in thefrom structure.

• recv(s,buf,len,flags).Recv is a variant ofrecvfrom in which the the address of the
sending application is not returned.

• recvmsg(s,msg_struct,flags).Recvmsg is the scatter-gather version ofrecvfrom.
The message structure is the same as the one used forsendmsg.
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• read(s,buf,len). Readis the standard UNIX® system call for reading from a file or
socket. Like recv it does not return the address of the sending application.

Each of these routines calls a common routine,recvit which checks the validity of the applica-
tions buffers and then callssoreceive to actually copy the UDP data from the inbound socket
queue into the application’s space. Ifthe application tried to read from a socket which had no
data waiting,soreceive will block, waiting for data.

3.3. Differences in SUN 4.1.1

The networking portion of the SUN 4.1.1 Operating System has almost the same structure
as the BSD code. There were only two differences of note.

First, the SUN code has a special version of the UDP sending code for use by the kernel res-
ident part of the Network File System (NFS). This code has been optimized to make the types of
UDP calls made by NFS slightly faster. Some of these optimizations turned out to be similar to
those we made to the UDP code in general and where we concluded the results were close enough
as to make no difference, we left the SUN code as it was.

Second, the SUN code normally does not checksum UDP datagrams when sending.How-
ev er, many system managers insist on turning the checksum on to better protect against corrupted
data packets in applications like the NFS. Furthermore, since we were interested in studying
combined checksum and copy loops, it made sense to start with software that did the checksum.
So we changed the code to always perform the checksum.

4. ExperimentalApproach

We chose to try to optimize UDP while retaining the basic structure of the BSD networking
code. We took this approach for two reasons. Pragmatically, substantial modifications to the
BSD structure would force us to change code for protocols other than UDP and we needed to
bound our effort. Froman experimental perspective, large scale changes to the code would make
it more difficult to identify the effects of particular optimizations.

A more radical restructuring of the code has been done at Univ. California Berkeley for the
4.4 BSD release. As part of the Berkeley restructuring, some optimizations were made to the
UDP code by Van Jacobson and Mike Karels. Many of their optimizations are similar to ours.
(We were not aware of each other’s work until both projects were largely done). Where the
Berkeley work is particularly insightful or different from our work, we occasionally comment on
the 4.4 BSD work in footnotes.

4.1. Optimizing with Gprof

The initial step in the process was to profile the kernel to get a sense of where the protocol
bottlenecks appeared to be.We used thegprof profiling application that both tracks the amount
of time spent in each routine and also produces call graphs which show which routines called
other routines and how much time in each routine is the result of a call from a particular parent
routine.

Gprof displays its results in two forms. First,it produces a chart displaying the call graph.
Functions are listed in order of how much time they took (including calls to subroutines), along
with a list of the routines that called them and the subroutines called.Second,gprof lists the total
time spent in each function.

In general,gprof is a useful tool for profiling systems. It does, however, hav eat least one
serious flaw: it assumes that all calls to a function take the same time. Thus when it builds the
call graphs, the percentage of time spent in a subroutine is simply estimated by dividing the total
time spent in the subroutine by the number of times the subroutine was called by the parent
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function. Thisproblem is well-documented in thegprof manual pages, however we did forget it
more than once in the heat of analysis (sometimes with beneficial results − see the discussion of
in-line IP checksums below).

4.2. Test Cases

To generate profiles, we used a test application that sent UDP datagrams to the discard
server [16] on the same machine over a software loopback using thesendto system call. (The
discard server simply throws away any data sent to it). Profiles over the loopback showed both
sending and receiving costs. The two basic tests were to send 200,000 datagrams, each contain-
ing 64-bytes of data, and 200,000 datagrams containing 512-bytes of data.The two datagram
sizes were chosen to represent common transfer extremes: 64-bytes for small datagrams such as
those used for RPC calls and 512-bytes to represent larger datagrams such as those generated by
distributed file systems when they transfer file blocks. Because 64 and 512 are both powers of
two, and may therefore benefit from various memory handling routines that might favor such
sizes, we also tested our slowest and fastest implementations with data sizes of 59 and 509 bytes.

Initial experimentation with the test application showed that there were two minor problems
(from an experimenter’s point of view) with the standard discard daemon supplied with both the
Mach and the SUN code.First, the receiver buffer space was not large enough. Some inbound
UDP datagrams were being dropped without being fully processed.Second, the discard program
was implemented as part of a larger program that provided several services at once.To figure out
which service had data waiting, the application used theselect system call to find out which
sockets had received data. Theresult was that a considerable amount of time was spent in the
select system call, which was not of interest.To avoid these issues, the standard discard server
was replaced with a version that allocated extra receiver space and did not callselect.

4.3. GeneralApproach

The optimizations were done in two stages. Inthe first stage, we looked for ways to reduce
the per-packet overhead. Thesechanges were generally simple to make, a matter of changing a
few lines of code. In the second stage we tried to improve data handling (in particular, combine
checksum and copy loops). Changingthe data handling code required considerably more effort,
although the payoffs proved dramatic.

Table 1a: Initial Performance (386)
64-byte datagrams 512-byte datagrams

Code Section Time (seconds) % of Total Time (seconds) % of Total
sosend 25.94 2.7% 26.33 2.6%
udp_usrreq & output 29.17 4.3% 32.17 3.2%
ip_output 14.46 1.5% 13.93 1.4%
ipintr 18.99 2.0% 18.49 1.8%
udp_input 32.29 3.4% 34.99 3.4%
in_cksum 47.64 5.0% 98.82 9.7%
soreceive 28.88 3.1% 28.73 2.8%

Total UDP/IP/Socket 193.37 20.6% 253.45 24.9%
Total Kernel Time 936.03 100.0% 1018.36 100.0%

5. Initial System

The initial profile of both systems is shown in Tables 1a and 1b below. For each major rou-
tine, the table shows the total number of seconds spent in that routine and its local subroutines.
(By local subroutines, we mean those routines called by the listed procedures which are not
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themselves included in the table).The listing for theip_output routine does not include the cost
of calls to the loopback interface’s output routine.

Table 1b: Initial Performance (Sparc)
64-byte datagrams 512-byte datagrams

Code Section Time (seconds) % of Total Time (seconds) % of Total
sosend 10.48 5.8% 12.02 5.7%
udp_usrreq & output 23.24 12.8 20.65 9.8%
ip_output 6.56 3.6% 6.35 2.0%
ipintr 5.30 2.9% 6.38 3.0%
udp_input 15.37 8.5% 16.83 8.0%
in_cksum 12.92 7.1% 17.84 8.4%
soreceive1 9.24 5.1% 11.41 5.4%

Total UDP/IP/Socket 83.11 45.8% 91.48 43.3%
Total Kernel Time 181.42 100.0% 211.33 100.0%

Probably the most significant observation that can be made from these tables is that the total time
spent in the socket and UDP and IP code is rather small, even though the test systems were just
running the UDP test applications. On the 386 processor, gprof revealed that amajority of the
kernel’s time was spent simply handling interrupts and managing changes in processor priority to
protect critical code regions. Onthe Sparc, less than 50% of the time in the kernel is actually in
UDP or IP code.It is interesting to observe that the time spent executing UDP/IP and socket code
in both 386 and Sparc is only a factor of two apart, while the overall kernel times differ by a fac-
tor of four. A major difference between the processors is in how they handle overhead activities.

6. ReducingPer-Packet Overhead

The first step was to try to reduce the per-packet overhead. Theimprovements involved
either exploiting locality, or replacing excessively general purpose code with simpler and faster
special purpose code.

6.1. In-Line Checksum of IP Header

Although Table 1 does not show it, the initial profile showed that a surprisingly large
amount of time on the 386 processor was spent calling the IP checksum routine fromipintr and
ip_output to checksum the 20-byte IP header. The call trace showed that about 25% of the time
in ip_input and over 50% of the time inip_output were actually spent in the checksum routine.
In reality, this was a case ofgprof amortizing the cost of calling the checksum routine over all
calls and averaging the cost of doing IP header checksums with the cost of doing checksums over
entire datagrams. So the header checksum costs were somewhat lower thangprof suggested. But
the observation still lead to a potential optimization.

A quick investigation of the checksum routine showed that it had been optimized for check-
summing long packets. Clearlythis was not optimal for the short IP header checksum (which
must be done on every IP datagram). There was a choice of approaches: the checksum routine
could be reoptimized, or, giv en that the IP header checksum was almost always done on a 20-byte
header (adding options to IP datagrams is not common), the IP header checksum could be put in-
line.

1 Time spent in soreceive does not include time spent insbwait, waiting for packets to arrive.
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For the immediate problem of the IP header checksum, the in-line option seemed best.
Most systems can checksum 20 bytes in about 6 to 8 assembler instructions, which is less than the
cost of making a procedure call (much less doing anything in the procedure).So we installed an
in-line checksum. The code implemented a portable version of the checksum in bothipintr and
ip_output which required about 20 instructions to compute the checksum for 20-byte headers.
Headers larger than 20-bytes (i.e. IP headers with options) were still checksummed by the regular
checksum routine.2 The 386 results are shown in Table 2a.

Table 2a − In-Line IP Header Checksum (386)
64-byte datagrams 512-byte datagrams

Code Section old time new time old time new time
in_cksum 47.64 30.29 98.82 85.46
ip_output 14.46 16.27 13.93 15.60
ipintr 18.99 21.26 18.49 20.93

Time Improvement 13.27 9.25
% UDP/IP Improvement 7.9% 4.0%

The results appear to confirm the utility of the in-line checksum. The cost of doing the in-
line checksum caused a modest increase in the cost ofip_output and ipintr but produced a sharp
reduction in checksumming costs.

When the SUN code was examined it proved to already have an in-line IP checksum imple-
mented inipintr and in the NFS version ofip_output. Howev er, the regular ip_output routine
did not have an in-line checksum, so we added it.Table 2b shows the improvement.

Table 2b − In-Line IP Header Checksum (Sparc)
64-byte datagrams 512-byte datagrams

Code Section old time new time old time new time
in_cksum 12.92 10.05 17.84 17.20
ip_output 6.56 4.94 6.35 5.49

Time Improvement 4.49 1.50
% UDP/IP Improvement 4.4% 1.4%

One oddity of both Tables 2a and 2b is that larger datagrams benefit less in absolute time from the
elimination of the call to the checksum routine.On the 386, large packets save a little over 9 sec-
onds, while small packets save over 13 seconds. Similarlyon the Sparc, large packets save only
1.5 seconds while small packets save nearly 4.5 seconds. This difference is consistent across sev-
eral profiles. The new code contains no dependency on the length of the packet, so we believe
(but have been unable to prove) that this difference represents a kernel effect probably related to
interactions between interrupts (which are more likely to interrupt processing on large packets)
and instruction and data cache management.

6.2. DeletingPseudo-Connect

In the BSD system, UDP datagrams can be sent in one of two ways. Asocket can fix its
remote UDP address by using theconnect system call, after which the socket can only be used
for sending to the address it is connected to.Or, a  socket can usesendto to individually set the
remote address for each UDP datagram sent.

2 No IP headers with options were sent by the test application.
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In the 4.3 BSD code, usingsendto with an address is treated as a special case of sending
over a connected socket. Thecode inudp_output goes through the standard procedure for inter-
nally connecting a remote address to the UDP socket’s protocol control block (PCB), sends the
datagram, and then disconnects the remote address.

No packets go over the network for the connect procedure, but the operations of connecting
an address are still very expensive and consume nearly a third of the cost of each UDP transmis-
sion. Thereare several reasons for this expense.

First, binding creates a race condition:during the time the remote address is set in the PCB,
the socket cannot receive inbound datagrams from any system other than the one it is sending to.
This race condition occurs because on the inbound side,udp_input scans the list of UDP PCBs
looking for a PCB that matches the source and destination address(es) of the inbound datagram.
There is a chance that if an inbound datagram arrives while a socket has temporarily bound its
destination address during asendto call, a mistaken match (or failure to match) may occur. To
avoid this race condition,udp_usrreq must switch to a higher processor priority level to block
out input interrupts. On the 386 changing the processor priority level is expensive.

Second, the routine for binding to a remote address is a general purpose routine, intended to
be called at connection setup time, and is not optimized to be called for every datagram.Calling
it repeatedly is expensive.

To fix this problem,udp_output was revised to send to a specified remote address without
changing the socket PCB. This eliminated the race condition and got rid of the call to the general
purpose connecting routine, although some code from this routine had to be copied into
udp_output.3

The performance improvements are in the sending side and in the priority management
code, and are shown in Tables 3a and 3b. The improvement in performance is significant.

Table 3a− Deleting Pseudo-Connect (386)
64-byte 512-byte

Code Section Time % of Total Time % of Total
Priority Mgmt/Interrupts (old) 543.32 58% 572.14 55.7%
Priority Mgmt/Interrupts (new) 541.30 60.2% 550.55 56.1%
udp_usrreq & udp_output (old) 29.17 4.3% 31.17 3.1%
udp_usrreq & udp_output (new) 17.95 1.9% 17.87 1.8%
Total UDP/IP/Socket Improvement4 11.22 6.6% 13.30 5.5%

Table 3b− Deleting Pseudo-Connect (Sparc)
64-byte 512-byte

Code Section Time % of Total Time % of Total
Priority Mgmt (old)5 1.53 0.8% 2.07 1.0%
Priority Mgmt (new) 1.58 0.9% 2.15 1.0%
udp_usrreq & udp_output (old) 23.24 12.4% 20.65 9.6%
udp_usrreq & udp_output (new) 9.22 5.1% 12.78 6.0%
Total UDP/IP/Socket Improvement 14.02 7.5% 7.87 3.7%

3 The 4.4 BSD implementation has gone further and actually restructured the UDP data structures so that
a connected socket is an exceptional case of a unconnected socket rather than the other way around.

4 Improvement percentages are measured against the time spent in UDP/IP code in the original code.
5 For the Sparc profile, it was possible to partially isolate the calls to particularspl routines by the UDP
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6.3. Improved One-Behind Cache(s)

A one-behind cache contains the PCB of the last UDP socket to receive a datagram. The
reason for keeping the one-behind cache is that there is a good chance that the next datagram
received will be destined for the same socket as the previous datagram received. Keeping the
cache makes it possible to avoid a more expensive search of all the UDP PCBs.

6.3.1. Fixingthe Reno Cache: Wildcard Support

On the 4.3BSD Tahoe release, UDP does not have a one-behind cache of the UDP PCBs.
However, the 4.3 BSD Reno release does and we incorporated the Reno cache into our UDP code.

But when we tested the cache performance, the Reno cache had no effect. The problem
turned out to be that the caching code did not support wildcarding.Wildcarding is the practice of
specifying only part of the remote or local address and accepting any value for the remaining
fields. Inthe BSD code, UDP addresses can be classified into three types:

(1) [<laddr,lport><faddr,fport>]

(2) [<laddr,lport><*,*>]

(3) [<*,lport><*,*>]

where [lf]port is the local or foreign UDP port, [lf]addr is the local or foreign IP address, and * is
a wildcard (i.e. ‘‘don’t care’’). Whenan inbound UDP datagram is received, the UDP code looks
for the most complete (least wildcarded) address match it can find and delivers the data to that
socket.

One problem with wildcarding is that it makes caching difficult. Considerfor example, a
datagram that arrives and matches an address of type (3).Now suppose that the next arriving
datagram would match both the same type (3) address, but also a more complete address of type
(1). If the PCB of the first datagram is placed in a cache, the second datagram will make a false
cache hit. The cache hit is false because while the second datagram matches the type (3) address,
it should be delivered to the type (1) address it matches more completely. We call this problem
cache hiding, because the type (3) address in the cache hides the existence of the preferred type
(1) address.

Unfortunately, wildcarding is very common in BSD applications.Most UDP servers do not
fix their remote address or local IP address, but simply accept all inbound UDP datagrams sent to
their reserved UDP port. By simply binding to the local port, but not an address, the servers on
multi-homed systems (systems with more than one IP address) are able to serve datagrams
regardless of the interface they arrived on. TheReno cache will not cache wildcard addresses (to
avoid cache hiding) and therefore fails to have an effect on most applications (including our tests).

We enhanced the Reno cache code to allow the cache to contain wildcard addresses.To
solve the problem of cache hiding, the routines that add and remove addresses from a PCB were
modified to detect potential cases of cache hiding and to mark as uncacheable those PCBs that
could cause cache hiding.

6.3.2. Mogul’s Suggestion: Caching the Sender’s PCB

Mogul [8] has recently done a study of the locality of network traffic that shows that half of
all UDP datagrams received are replies to the last UDP datagram sent.This suggests that a one-
behind cache of thesendingPCB might have an effect.

code, so only this code is measured (splnet, spl3 andsplx called by UDP output routines).
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As with the one-behind receiving cache, wildcarding is a concern, but the same marking
algorithm works. SendingPCBs that would causecache hidingare not cached.

6.3.3. SUNCaching and Wildcards

SUN OS 4.1.1 turned out to have a broken one-behind cache of receiving PCBs which could
cause data to be misdelivered to the wrong application, due to a failure to detect cache hiding.
We replaced the SUN cache code with ours.

6.3.4. CachingImpr ovements

Testing the effects of the caching improvements was difficult. Running the tests on a
‘‘ quiet’’ machine (a machine receiving no traffic other than our tests) would give reproduceable
results. Buta quiet machine would not give much indication of how a real workload would inter-
act with the caching algorithms.Running on an active machine, however, meant the results might
not be reproduceable.

In the end we compromised. The 386 test machine was already an isolated machine, so it
was tested using the standard program sending 200,000 datagrams.These results are shown in
Table 4a.

Table 4a − Improved Caches (386)
64-byte 512-byte

Code Section Time % of Total Time % of Total
udp_input (old) 32.29 3.4% 34.99 3.4%
udp_input (new) 24.03 2.7% 23.63 2.4%
Total UDP/IP/Socket Improvement 8.26 4.8% 11.36 4.7%

It should be noted that these results are probably still misleading, for two conflicting reasons.
First, the simple test application achieved a 100% cache hit rate. Second the test system was run-
ning a minimum of user applications, so the UDP PCB cache was somewhat smaller than normal.
Fewer applications makes a normal PCB lookup less expensive and tends to understate the bene-
fits of caching.

In the second test, the caching code was run on a SUN workstation that served both as a
client and a file server and profiled the code with the original SUN cache, the improved cache
code and with the cache turned off. By picking a workstation that did some work as both file
server and client we hoped to get a reasonable mix of traffic. Furthermore,the SUN had a more
normal number of active UDP applications: between 60 and 65 UDP sockets open at any giv en
time. Eachtest lasted for about 2-1/2 hours on a normal business day during which roughly
100,000 UDP datagrams were received. Theresults of these tests are shown in Table 4b. All
time values have been normalized to 100,000 packets so they are comparable.

Table 4b − Improved Caches with Traffic (SUN)
no-cache SUN cache newcache

Time inudp_input 17.44 14.16 11.37
udp_input without socket code6 8.82 5.07 3.44
% of hits in receiver cache NA 59% 57%
% of hits in sender cache NA NA 30%

6 In other words,udp_input without the calls to the socket layer buffering routines.
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The most important observations on the SUN are that caching is clearly beneficial and the sender
cache pays off splendidly, improving performance by about 50% more than just the receiver cache
alone. (Recallthat the SUN cache scheme suffers from cache hiding and can mis-deliver data; we
include it to illustrate the effects of receiver-only caching).A thorough analysis of these issues by
McKenney and Dove [9] has shown that even under demanding traffic loads, this caching scheme
performs well. (McKenney and Dove also identified a more sophisticated algorithm that performs
better under high loads with low locality).

6.3.5. OtherPotential Cache-Related Improvements

The cache hit rates on the sender and receiver caches were so high that we decided that try-
ing to optimize the PCB lookup code further was not fruitful.However, we had prepared two
additional optimizations and we discuss those optimizations here on the grounds that they may be
interesting in other situations.

First, the original PCB lookup routine is rather inefficient. It scans a linked list of UDP
PCBs looking for a PCB that exactly matches the incoming datagram (on both source and desti-
nation address). While scanning the list, the routine also notes the best wildcard match for the
datagram. Ifthe routine finds an exact match, it immediately returns the exact match. If the rou-
tine fails to find an exact match after scanning the entire list, it returns the best wildcard match, if
any. The inefficiency comes in having to scan the entire list before returning a wildcard. In the
original 4.3BSD code, the lookup routine had to check every PCB before returning a wildcard to
protect against cache hiding. But in our code, wildcard PCBs that may cause cache hiding are
marked. Thusif a wildcard that does not hide another PCB is found, the lookup routine can
return the wildcard match immediately. Since most applications use wildcarded PCBs, this
enhancement should shorten the average PCB search time by roughly 50% (half the length of the
search list).

Another optimization (suggested to us by Gary Delp of IBM) is to move frequently
accessed PCBs to the front of the PCB list. An easy implementation of this idea is to move a
PCB to the front of the PCB list whenever it is accessed. ThePCB list is doubly linked so mov-
ing is an easy operation and the algorithm will tend to cluster heavily used PCBs at the front of
the list. Observe that this algorithm works best if the PCB lookup routine has already been modi-
fied to immediately return a wildcarded PCB that does not cause cache hiding.The expected
result of this optimization would be to shorten the average PCB search time to just two or three
comparisons.

6.4. Improving Sendit Performance

Recall that the 386 processor spent a majority of its time in the routines to manage changes
of processor priority. This observation led us to try to find ways to reduce the calls to these rou-
tines. Thegoal was to find improvements that would significantly help the 386 and also improve
performance (though perhaps only a little) on the Sparc.

The BSD networking code changes (or at least, checks) the process priority quite a bit.For
example, when a packet arrives, the processor priority must change at least five times before data
reaches the user:

(1) First, the network interface must interrupt and after reading the packet, the network
driver routine schedules a software interrupt at a lower priority foripintr;

(2) ipintr in turn calls the transport level routine which places the data on the application’s
input queue

(3-5) afteripintr completes, the processor priority can be reduced to the lowest level and the
application will try to read the data from the queue.However, to protect against race
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conditions in the input queue, the processor priority must be raised to the level used by
ipintr while the queue is being manipulated, then reduced again.

In fact, there are even more priority changes than these, as the networking code often must briefly
lock out higher priorities while manipulating shared data structures.

One should observe that the intermediate priority level for ipintr is superfluous and could be
removed (all inbound data could be processed at application priority).This would improve per-
formance of both the input and output code, as the output code would no longer have to raise its
priority level to avoid race conditions with the input code.7 However to make that change would
have required us to restructure all the BSD networking code.

We were, however, able to identify a more modest improvement in thesendit routine.

When an application calls thesendto system call, it passes down the address to which the
datagram is to be sent.Sendit, in turn, allocates a kernel memory buffer, copies the address into
the memory buffer, and passes the buffer containing the address tososend and udp_usrreq.
After the datagram has been sent,sendit frees the memory buffer.

There is a small inefficiency in this process.Sendto is a frequently-used system call, so
sendit is constantly calling the buffer management routines to allocate and free a buffer. These
routines are not very expensive themselves, but they do require a change in processor priority,
because memory buffers sometimes have to be allocated by device drivers (which run at a higher
interrupt level than the networking code). Thus, if we could reduce the calls to the buffer man-
agement routines, the time spent managing processor priority changes should go down.

So we changedsendit to try to avoid freeing memory buffers. Theroutine keeps a one
pointer cache.If sendit is about to free a memory buffer, it first checks the cache. If the pointer
is null, it saves the memory buffer in the cache, otherwise it frees the buffer. Before allocating a
memory buffer, sendit first checks to see if there is a buffer in the cache; if so, it uses the cached
buffer. Note that this scheme works because the memory buffers in the BSD system are a fixed
size.

The results for the 386 processor were encouraging and are shown in Table 5a.

Table 5a − Improved Sendit (386)
64-byte 512-byte

Code Section old new old new
Priority Mgmt/Interrupts 541.30 511.37 550.55 529.25
sendit 53.28 47.76 51.75 53.76

Total Improvement 35.45 19.31
% Improvement 3.8% 1.9%

The 386 improvements represent about a 2% to 4% improvement in kernel performance and the
reduction in time in priority management code for 64-byte packets is equal to nearly a third of the
time spent in UDP and socket code.

We expected improvements on the Sparc to be less notable, largely because changing pro-
cessor priority levels on the Sparc is much cheaper. Howev er the Sparc improvements were use-
ful. The results are shown in Table 5b. (The Sparc costs forsendit include the costs of calls to
priority routines).

7 The latest 4.4BSD release will eliminate this priority level.
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Table 5b − Improved Sendit (Sparc)
64-byte 512-byte

Code Section old new old new
sendit 22.30 19.27 24.26 22.54

Total Improvement 3.03 1.72
% Improvement 1.6% 0.8%

The improvement is equal to about 1% to 2% of total kernel time.

7. ReducingData Handling Costs

After reducing the per-packet overhead, we worked on reducing the data handling costs.
The structure of the BSD code largely dictated that there be two data copies on both transmission
and receipt of data plus a checksum.Since neither copy could be eliminated without completely
rewriting the BSD code, we focussed on trying to reduce costs by combining the checksum with
one of the copy loops.

7.1. Combiningthe Checksum and Copy Loops

Over the past few years, there has been much discussion of the possible merits of reducing
the number of times that the data in a datagram must be scanned by reducing the number of data
copies between different memory and buffer spaces and by combining the checksum and data
copy loops. (Thisidea is believed to hav eoriginated with Van Jacobson).

The standard BSD code scans data three times on both input and output.On output, the
data is copied from user space to kernel buffers, checksummed, and then copied from kernel
buffers to interface memory. The same operations are done on input, but in reverse order. The
copies between kernel buffers and interface memory are often done with some hardware assist,
such as DMA, but the copies between user and kernel space and the checksum are all done in
software. We changed the UDP code to do the copy between user and kernel space and the
checksum in a single loop.

7.1.1. Changesto Code

Since checksums can be protocol specific, the code to do copies and checksums had to be
done in a protocol specific way. The logical approach, therefore, was to add some new entries to
the protocol switch table.Initially, we tried simply adding protocol specific data copy routines to
the protocol switch table but this turned out to make the already complicated socket routines even
more complex.8 Making code more complex did not seem desirable, so we tried another approach
and wrote protocol-specific versions ofsosend andsoreceive and placed them in the protocol
switch table.

In this new version of the code, when a datagram is sent,sendit calls udp_sosend.
Udp_sosend does some error checking, then copies and checksums the data from user space,
adds the UDP protocol header, and calls ip_output with the UDP datagram.Thus a chain of
three procedure calls (sosend, udp_usrreq, udp_output) was reduced to a single call to

8 The list of added complexities is long and not very edifying.For those who are curious, here are a two
examples of the problems encountered. First, having protocol-specific data copy routines meant that the
socket code had to be recoded to either use the new copy routines, if they existed, or the old copy routines if
there were no protocol specific routines.So already complex code to manage data copies was made even
harder to read.Another problem was communication with lower layers.How does the socket layer pass the
partial checksums it computes down to the UDP layer on output?How does the UDP input routines pass up
partial checksum information to socket routines on input?
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udp_sosend. Furthermore, becauseudp_sosend is protocol-specific, we were able to eliminate
a lot of unnecessary tests and reduce the number of critical regions that had to be protected.

On the receiving side, the code is a bit more complex. Udp_input was changed to compute
the checksum on the UDP header (but not the UDP data) and then remove the UDP header from
the datagram. The remainder of the datagram, along with the partial checksum and the length of
the UDP datagram are then passed tosbappendaddr, which queues the datagram to be read by
the application. When the application does the read,recvit calls a UDP-specific version ofsore-
ceive, which checksums the data while copying the data into application memory. If the check-
sum is correct, then the read completes.If the checksum fails, one of two things happens. If the
application is not non-blocking, the read routine simply waits for the next datagram to arrive. If
the application is non-blocking, and there are no additional datagrams immediately waiting to be
processed, the routine returns an error indicating the read would block (EWOULDBLOCK).

Observe that this new version of the receiving code implies two minor changes to the
semantics of reading from a socket. First,a non-blocking application which learns from aselect
call that data is waiting to be read may get an unexpected error (EWOULDBLOCK) if the data
fails to checksum.Second, because the checksum can only be confirmed after the data has been
copied, an application’s buffers will be changed even if the read call fails.

The key piece of code that both copies and checksums the data was written in assembler for
both the 386 and Sparc systems.(The authors would like to thank Van Jacobson for providing the
assembly code for the Sparc).

7.1.2. Performance Improvements

Combining the copy and checksum loops required extensive changes to the UDP implemen-
tation. Inaddition to combining the two loops, calling paths have been changed, and old code is
often executed in new places and at different priority levels. As a result, direct comparisons of
old and new code are somewhat difficult. However, there were dramatic improvements.

The effect of combining the checksum and copy loops is to reduce three memory accesses
to two. Thecopy loop had one read and one write for each word of data, and the checksum had to
read the data again, for a total of three accesses. The combined loop reads each word into a regis-
ter, adds the word to the running checksum, and then writes the word, thus giving two accesses
plus an addition. Intuitively, one would look for about a one third improvement in speed.

In fact, the improvement was substantially more, as can be seen in Tables 6a and 6b, which
compare the time spent in the checksum and copy routines before and after the changes.9 These
results are shown in Tables 6a and 6b.

Table 6a: Combined Checksum and Copy (386)
data size before after impr ovement %
64 bytes 51.57 27.56 24.01 46.6%
512 bytes 108.59 65.57 43.02 39.6%

9 The ‘‘before’’ numbers are the costs of calling bothuiomove (the copy routine) andin_cksum. They
are from a profile taken after the ip header checksum code was optimized. The ‘‘after’’ numbers are the cost
of calling in_uiomove which both moves and checksums in one loop.
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Table 6b: Combined Checksum and Copy (Sparc)
data size before after impr ovement %

64 12.40 4.40 8.00 64.5%
512 20.20 5.0 15.2 75.2%

For both 386 and the Sparc, tests of the copy-checksum routines suggest that, for some
inputs, the combined routines are faster than the original copy routines they replaced! The386
code was written by the authors and was carefully designed to fit inside the small cache of the 386
processor we were using.(Tests of the same code with other processors with different cache sizes
gave smaller performance improvements). TheSparc code provided Van Jacobson was modified
by the authors to fit into the kernel. Thesemodifications made Jacobson’s routine slightly slower
but still substantially faster than the existing copy code in the Sparc.

8. Summaryof Impr ovements

The incremental discussions of improvements above may make it difficult to assess the total
performance improvement. Thissection summarizes the improvements and discusses the signifi-
cance of the results.

8.1. Overall Impr ovements

Tables 7a and 7b compares the total improvement between the intial (unoptimized) system
and the final (most optimized) system. In addition to the regular data sizes of 64 and 512 bytes,
the sizes of 59 and 509 were tested to show that the performance improvements are not restricted
to data sizes which are powers of two.

Table 7a: Total Performance Improvement (386)
59 bytes 64 bytes 509 bytes 512 bytes

initial UDP/IP & socket 202.19 193.37 264.21 253.45
optimized UDP/IP & socket 134.91 140.88 181.37 177.05
UDP/IP & socket improvement 74.86 66.31 90.46 85.57
initial total kernel 927.12 936.03 1034.35 1018.36
optimized total kernel 808.63 811.50 869.76 854.58
total kernel improvement 118.49 124.53 164.59 163.78
% UDP improvement 36% 32% 33% 32.6%
% Kernel improvement 12.8% 13.3% 15.9% 16.1%

Table 7b: Total Performance Improvement (Sparc)
59 bytes 64 bytes 509 bytes 512 bytes

initial UDP/IP & socket 92.32 83.11 93.00 91.48
optimized UDP/IP & socket 55.57 58.53 68.95 64.17
UDP/IP & socket improvement 36.75 24.58 24.05 27.31
initial total kernel 184.40 181.42 207.06 211.33
optimized total kernel 151.00 147.77 178.25 175.15
% UDP improvement 39.8% 29.6% 25.9% 29.9%
% Kernel improvement 18.11% 18.54% 13.9% 17.1%

The results are generally very good.UDP performance across both CISC and RISC sys-
tems improved about 30% and overall kernel performance improved between 12% and 18%
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8.2. Significanceof Results

We set out to optimize UDP as an exercise in applying optimizations used on TCP to other
protocols. Broadlyspeaking, the optimizations that worked well took one of three forms:

1. Cacheswere used to exploit locality. A one-behind sender and receiver cache was
added. Mbufs were cached insendit.

2. Expensive general purpose code was replaced with code tuned to the particular proto-
col. Sosend was replaced withudp_sosend and the IP header checksum was com-
puted in-line rather than in a general purpose subroutine.

3. Memoryaccesses were reduced. In this experiment, the checksum and copy loops
were combined.

These all are general techniques.They worked well when applied to TCP and have worked
equally well when applied to UDP. Recent work by Sample and Neufeld has shown that these
same techniques can also be applied to making external data format conversion run fast [17].The
implication is that these techniques should be routinely applied to protocol implementations.

8.3. OptimizationsNot Tested

There are at least three optimizations that are believed to improve protocol performance that
could not be tested in our test environment.

The first optimization is to build a better network interface. Asprotocol processing costs
have been reduced, it has become increasingly clear that network device drivers are often both
performance pigs (requiring lots of code to manage) and manage data buffers poorly (causing
increased overhead in data handling). Recently there has been consider success in building better
network interfaces, most notably the Medusa and Afterburner interfaces built by a team at
Hewlett Packard [13,14]. These interfaces are designed to minimize device driver complexity (it
is a matter of a few instructions to send or receive a packet) and provide better buffer manage-
ment. Unfortunately, an interface built along these lines was not available for either of our test
systems.

The second optimization is to try to improve code locality and reduce instruction cache
misses in the processor. In RISC processors, it is also possible to improve branch predictions and
minimize branch stalls. Promising results in this area have been reported by Speeret. al. [18]
However, neither of our tests systems had the compiler support necessary to experiment with this
type of optimization.

Finally, there has been some interesting work with parallelism.Work by Bj"orkman and
Gunningberg with TCP [19] and Asthanaet. al.on a parallel router [20] suggest that by striping
entire datagrams (rather than pieces of the datagrams) across processors, it may be possible to
achieve better TCP and IP performance.Unfortunately, we did not have access to a multiproces-
sor machine to test these ideas.

8.4. Generalityof Results to Different Hardware Bases

The performance improvements were done on both a CISC processor and a RISC processor
to evaluate the impact of various performance improvements on different systems.

One of the interesting results is that, except for the extraordinary overhead (particularly, pri-
ority management and interrupt code) of the 386 processor, each optimization had a similar effect
on both processors. This suggests, though by no means proves, that the optimizations are general
rather than processor specific.

Recently, there’s been some debate about whether combining the checksum and copy loops
is a general solution or specific to certain machine architectures. The evidence is somewhat
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mixed.

Table 8: Cost of Adding Checksum to Copy Loop
System copy copy and checksum additional cost

ns/byte ns/byte ns/byte
HP9000/370 122 144 18%
Sparcstation1 164 177 8%
Sparcstation2 109 109 0%
HP9000/720 54 54 0%
DECstation 5000/133
(R3000 CPU) 82.5 99.5 20%
DECstation 2100
(R2000 CPU) 288 292 1.4%
Values for HP9000s and Sparcstations from Van Jacobson.Values for DECstations
from Peter Desnoyers. All values are for transfering uncached data. Results for
cached data typically show slightly higher costs for adding the checksum.

Tests on a number of machines have shown that a combined copy and checksum loop runs
only very slightly slower than the copy loop alone. The results for several different workstations
architectures are summarized in Table 8.However, in systems where the only memory copy is
between application buffers and the network interface, it may be more efficient to do the data
copy using DMA rather than a software loop [21]. The emerging principle seems to be that if one
has to do a copy loop using software, then the checksum should be combined with the copy loop
because the checksum adds very little to the cost. But if the data copy is best done by hardware,
other mechanisms for performing the checksum need to be found.

8.5. Conclusion

Recently Van Jacobson has informally reported improving TCP/IP and UDP/IP performance
in BSD by as much as 95%, by doing a complete reimplementation of the protocols that takes
greater advantage of many of the performance enhancements mentioned above. The
improvements discussed in this paper are much more modest, but in the same vein. Ourconclu-
sion is that many problems experienced with protocol performance are more appropriately
blamed on implementations than the protocols themselves.
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Appendix I: 386 Copy and Checksum Code

As an example of the combined copy and checksum code, here is an excerpt from the user-
space version of the code for the 386.Note that this routine returns the 1’s-complement sum over
the data − to generate the full IP checksum requires the sum to be complemented.

/ C calling convention:
/ in_bcopy(from,to,count,xsum); char *from, *to; int count; unsigned short *xsum
/ copycount bytes betweenfrom andto and put sum inxsum
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_in_bcopy:
pushl %edi / save various registers
pushl %esi
pushl %ebx
pushl %ecx
pushl %edx
movl 20 +12(%esp),%edx / 20 for 5 pushes onto stack
movl 20 +8(%esp),%edi
movl 20 +4(%esp),%esi

movl $0,%eax / zero the initial xsum
movl %edx,%ecx / copy the byte count
js ibout / if byte count negative, quit now

sar l $5,%ecx / start by adding groups of 8 long words
dec %ecx / count down to enter loop
jl ibL2 / jump to code to do smaller units of data

ibL1:
addl (%esi),%eax / this ordering runs best in our cache
movsl
adcl (%esi),%eax
movsl
adcl (%esi),%eax
movsl
adcl (%esi),%eax
movsl
addl (%esi),%eax
movsl
adcl (%esi),%eax
movsl
adcl (%esi),%eax
movsl
adcl (%esi),%eax
movsl
adcl $0,%eax / fold in carry bit before doing dec
dec %ecx / decrement 8 long word count
jge ibL1 / fall through to code to handle

/ smaller units of data

ibL2: /do remaining data here
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