A Faster UDP

Craig Partridge* and Stephen Pink
Swedish Institute of Computer Science

Abstract
As an experiment in protocol optimizations, the authors undertook tovepr® performance of a
stateless protocol, the User Datagram Protocol (UDP) in the 4.3UBB0 kernel. Thispaper de-
scribes the successful optimizations that were done along with measurementsateat 5 per
formance impreement of between 25% and 35% on CISC and RISC systems veradl &ernel
improvement of between 12% and 18%.

1. Introduction

Recent years lwa £en an impresa ries of algorithms and implementation techniques
that hare dharply impraoved software performance of implementations of the Transmission Con-
trol Protocol (TCP).However, when we started the work described in this paper in 1991, none of
these algorithms and techniques had been applied to User Datagram Protocol (UDP).

Applying the optimizations to UDP is interesting forotveasons. Firsynlike TCR, UDP is
stateless. Defineth RFC-768 [1], UDP simply adds transportdeaddressing and an optional
checksum to the Internet Protocol (IP) service of best-effort datagrarergelsome of work on
optimizing protocols has suggested that more stateful protocols caneabsiieer performance.

For example, Srintasan and Mogul showed that by adding state to a Network File System (NFS)
implementation the could achiee a nodest performance imprement [2]. Jacobsors Header
prediction algorithm [3] uses information that TCP must store about the connection state to pre-
dict the next segment that will arei and optimize the processing of the expecteghsmt. One
interesting research question is whether the optimizations it for stateful protocols I

TCP also work for stateless protocol€lidDP.

Second, UDP is very heidy used in the Internet protocol suite. Applications that use UDP
include the Domain Name System (DNS) [4], the NFS [5], and the dvlethime Protocol [6].
Any information about he to improve UDP performance is therefore likely to pay in imysd
performance for seral important applications.

To experiment with UDP performance, we applied various optimizations to the implementa-
tion of UDP in the 4.3BSD Tahoe release, as ported to the Mach 2.5 operating system running on
a 36 processorWe then applied these optimizations to the UDP implementation in SUN OS
release 4.1.1 running on a Sparc proces$bese tw systems allowed us to test the impact of
the optimizations on both CISC (386) and RISC (Sparc) processors.

2. An Overview of TCP Performance Optimizations

The first problem in applying the TCP performance optimizations to UDP is determining
which optimizations are TCP-specific and which optimizations could fruitfully be applied to
UDP. This section briefly sueys the work on TCP performance optimization (includingrky
done concurrently with the work described in this paper) and discusses which optimizations
appear applicable to UDP.

* The work described in this paper was done whileFBrtridge was on sabbatical from higuéar emplger, Bolt Be-
ranek and N@man. TUNIX is a trademark of Bell Laboratories.

FromIEEE/ACM Tans. on NetworkingAugust 1993)

2.

The cost of processing a TCP segment has gavts: (1) a pesggment @erhead which
does not depend on the size of the data in the segment; and (2) costs incurred in handling the data
in the segment on transmission and reception.

In 1989, Clark, Romay, Salwen and Jacobson examined a common TCP implementation
and found the pesegment werhead was about 200 instructions for both the sending andecei
ing TCR but noted that Jacobson had aperimental implementation that reduced the reogi
overhead [7]. In subsequent lectures, Jacobson has explained the techniques he used to reduce the
per-sgment werhead. Firsthe observed that, in most circumstances, TCP segments mrri
order and do not require special handling (e.gy tleveno out of band data). Based on this
obsenation, he deeloped a technique known as as header prediction, which, on TCP input, tests
to see if the inbound gment is the expected segment and, if so, uses an optimized processing
path of less than a dozen lines of code [3]. Jacobson also observed that TCP traffic exhibits con-
siderable locality The next TCP segment reeed is highly likely to be destined for the same
application as the lastg@ment. Cachingnformation about the last application (in the form of a
protocol control block or PCB) that regedl a gnent often makes it possible to skip doing an
expensve earch or PCB lookup to find out who is to reeghe sgment. Asubsequent study by
Mogul confirmed that there is substantial locality in TCP and UDFRictrf]. Furthermore,
McKenney and Dove havedone an extenge gudy of algorithms for PCB lookups [9].

The reductions in TCPverhead hae made data handling the major cost in TCP processing,
particularly for larger paaks. (Seefor example, the data in [10]). At minimum, the data in each
TCP segment must be copied between applicatidgferds and the network interface (or vice-
versa) and must be checksummediowever, most implementations do w&al copies. In 1990,
Clark challenged protocol implementers to reduce the data copies in their code [11], and Jacobson
suggested that building memory-mapped network interfaces would itnadssible to reduce the
number of data copies to a single g¢p2]. Jacobsofurther suggested that on RISC processors
it might be possible to fdctively eliminate the cost of doing the TCP checksum by fitting the
checksum into the code that copied data between applicatftardband the network intex€e
buffers. \éery recentlywork by a team at Heett-Packard Bristol Laboratory has demonstrated
that an interface based on Jacobsda®as can achie exraordinary TCP performance [13,14].

Examining these TCP optimizations from the perspeat trying to apply them to UDP
we concluded that some optimizations were clearly more promising than others.

Header prediction, which tries to predict the next segment, was clearly nvantete UDP
Each UDP datagram stands alone, independent of the ones before or after it. But the general prin-
ciple of locality seemed likely to kia some releance. IndeedMogul’s work showed that UDP
demonstrated locality similar to that of TCH the optimizations described belowe success-
fully made use of locality to impwe UDP performance.

Regarding data related costs, the cost of a daty eapuld appear to be Igely independent
of the protocol used to encapsulate the data. So reducing data copies appeared likely to yield
UDP improvements similar to those reported for TCRolling the checksum into the cpgode
was a poblematic performance imprement, since UDP permits applications to turf thie
checksum if thg wish. Inour work, we experimented with rolling the checksum andg ¢opps
together At the end of this paper some of the issues related to the checksum are discussed.

3. A Sketch of the 4.3 Tahoe UDP Code

We garted by optimizing the 4.3 BSD Tahoe release code, as ported to the Mach 2.5 operat-
ing system. We later applied the optimizations to SUN OS release 4.1.1. Tlieralites
between the original Tahoe release and the Mach release are sufficiently minorythaetheot
be discussedWhat follows is a sketch of the Tahoe UDP code. The importafereiifces
between the dhoe code and SUN code are described at the end of this section. Descriptions of

FromIEEE/ACM Tans. on NetworkingAugust 1993)

-3-

special features of the BSD code, which were not essential to the optimizaveiteéa left out.
See [15] for a more detailed discussion.

sendto recvfrom
send recv
sendmsg recvmsg
write read
sendit recvit
Y Y
sosend soreceive
Y Y
udp_usrreq sbappendaddr
I \
! I
udp_output udp_input
I \
! |
ip_output ipintr
I \
! I

3.1. SendingCode
An application that wishes to send a UDP datagram can use of one of four system calls:

sendto(s,msg,msglen,flags,to,tolen). Sendto sends the gen message riisg) to
the specified destination address on a pe-allocated UDP sockes)

send(s,msg,msglen,flags). In the BSD system, it is possible to fix the remote
address to which all UDP datagrams will be sent, usingahaect system call.For
UDP sockets which v been connected, theend call is simply a variant of the
sendto call, without the destination parameters.

sendmsg(s,msg_struct,flags). Sendmsg is another variant of theendto call,
which provides a scattg@ather 10 interice. Thamsg_struct parameter contains an
array specifying where the various pieces of the message lie in the appkcagom

ory. The kernel gathers theamious pieces into a single message and sends it.
Sendmsg can be used with either connected or unconnectedsockVhersending
over an wconnected soei, the destination address also must be placed in
msg_struct.

write(s,msg,msglen). Write is the standard UNIX® system call for writing to a file
or socket and, for sockets, bgbsjust likesend.

Once in the &rnel, all four system calls package their arguments into a standard form and call a
common sending routinesendit. Sendit confirms that the guments are valid (forxample,

FromIEEE/ACM Tans. on NetworkingAugust 1993)

-4-

confirming that the memory addresses toycagg within the applicatios’ memory space), and
then callssosend.

Sosend is the start of real protocol processingosend copies the user data into after
chain in kernel memory and passes the datendo the appropriate transport protocol. If the
transport protocol is not ready to accept the data dueviocBiatrol, sosend suspends, aiting
for space to becomevalable. Notethat for a protocol lik UDP, which has no flew control, all
sosend does is copthe user data into the kernel and call the transport protocol.

Sosend calls the transport protocol using a protocol switch table. Each transport protocol
has a protocol switch entry which includes basic information about the protocol (such as whether
a wnnection must be established before sending), and definitions for nine protocol entry points.
All communication with the transport protocol is made by calling one of the nine entry points.

Sosend always calls theusrreq entry point, the entry point that handles most application
system calls (“user requesjs'with the instruction to send a certain amount of data (the data is
passed as angument). Internallya protocol'susrreq routine typically does some very basic
parameter checking and then calls an appropriate subroutine to handle the systEor CHIP,
the routine to handle sending UDP datagramsljs output.

Udp_output is passed a socket-specific protocol control block (PCBuffarbchain con-
taining the data to be sent, and the destination address. The protocol control block contains the
UDP-specific information for the soekon which the data is being settdp_output prepends
the UDP header and a template of the IP hegaeiorms the UDP checksum, and callsvia
ip_output to send the datagram.

Ip_output fills in the IP header left unfilled bydp_output, looks up a route for the data-
gram, fragments the IP datagram if it is too large for the outbound interface, checksums the IP
headerand calls the appropriate interface device@rto s2nd the IP datagram.

3.2. Recering Code
The receiving code has a somewhat simpler structure than the sending code.

Upon receiving an IP datagram, a network interface places the datagram on the IP input
gqueue and sets a software interrupt for the IP input roufiety. When interruptedjpintr
removes datagrams from the input queue, checks the IP header and datagram lengtiityr v
and, if the datagram is destined for one of the ba@dtiresses, does IP reassembly (if required),
and passes the IP datagram up to the transport protocol, usipg ityeut routine in the trans-
port protocol$ protocol switch entry.

UDP’s input routine isudp_input. Udp_input checks the UDP header for errors and if the
datagram is valid, uses the UDP header and the IP header information to locate the appropriate
soclet to recaie the UDP data. If a socket exists to reeehe dataudp_input calls sbappen-
daddr (soclet tuffer append, with address) to append the data in the UDP datagram, plus the
source address of the application that sent the datagram, onto thesseekkliuffer.

Applications read from a socketead buffer using one of four system calls:

. recvfrom(s,buf,buflen,flags,from,fromlen)Recvfrom reads from the gen socket
into the luffer (buf) until either the hffer has been filled, or an entire datagram has
been readlf a partial datagram is read, the kernel discards the remainder of the data-
gram. Theaddress of the sending application is placed irirthra structure.

. recv(s,buf,len,flags).Recv is a variant ofrecvfrom in which the the address of the
sending application is not returned.

. recvmsg(s,msg_struct,flags)Recvmsg is the scattegather version ofrecvfrom.
The message structure is the same as the one usszhfbmsg.

FromIEEE/ACM Tans. on NetworkingAugust 1993)

-5-

. read(s,kuf,len). Reads the standard UNIX® system call for reading from a file or
soclet. Likerecv it does not return the address of the sending application.

Each of these routines calls a common routieeyit which checks the validity of the applica-
tions huffers and then callsoreceive to actually cog the UDP data from the inbound setk
gueue into the applicatian’'gace. Ifthe application tried to read from a socket which had no
data waitingsoreceive will block, waiting for data.

3.3. Differences in SUN 4.1.1

The netvorking portion of the SUN 4.1.1 Operating System has almost the same structure
as the BSD code. There were onlytdifferences of note.

First, the SUN code has a speciatsion of the UDP sending code for use by the kernel res-
ident part of the Network File System (NFS). This code has been optimized ¢diradipes of
UDP calls made by NFS slightlpagter Some of these optimizations turned out to be similar to
those we made to the UDP code in general and where we concluded the results were close enough
as to mak no dfference, we left the SUN code as it was.

Second, the SUN code normally does not checksum UDP datagrams when sktuhng.
eve, mary system managers insist on turning the checksum on to better pratatitagprrupted
data packets in applications déikhe NFS. Furthermore, since we were interested in studying
combined checksum and gojpops, it made sense to start with software that did the checksum.
So we changed the code tavays perform the checksum.

4. Experimental Approach

We chose to try to optimize UDP while retaining the basic structure of the BSnhatgy
code. V¢ took this approach for twreasons. Pragmaticallgubstantial modifications to the
BSD structure wuld force us to change code for protocols other than UDP and we needed to
bound our gbrt. Froman experimental perspeatj lage scale changes to the code would enak
it more difficult to identify the effects of particular optimizations.

A more radical restructuring of the code has been done at Galifornia Berleley for the
4.4 BSD release. As part of the Beldy restructuring, some optimizations were made to the
UDP code by Van Jacobson and WliKarels. Man of their optimizations are similar to ours.
(We were not ware of each othes’ work until both projects were Igely done). Where the
Berkeley work is particularly insightful or different from our work, we occasionally comment on
the 4.4 BSD work in footnotes.

4.1. Optimizing with Gprof

The initial step in the processaw to profile the kernel to get a sense of where the protocol
bottlenecks appeared to bé/e wsed thegprof profiling application that both tracks the amount
of time spent in each routine and also produces call graphs whishvghich routines called
other routines and momuch time in each routine is the result of a call from a particular parent
routine.

Gprof displays its results in twforms. Firstjt produces a chart displaying the call graph.
Functions are listed in order ofvmanuch time thg took (including calls to subroutines), along
with a list of the routines that called them and the subroutines c&kmmbndgprof lists the total
time spent in each function.

In generalgprof is a useful tool for profiling systems. It doeswager, haveat least one
serious flaw: it assumes that all calls to a functioe tak same time. Thus when it builds the
call graphs, the percentage of time spent in a subroutine is simply estimated by dividing the total
time spent in the subroutine by the number of times the subroutine was called by the parent

FromIEEE/ACM Tans. on NetworkingAugust 1993)

-6-

function. Thisproblem is well-documented in tlgprof manual pages, @ver we dd forget it
more than once in the heat of analysis (sometimes with beneficial results — see the discussion of
in-line IP checksums below).

4.2. Test Cases

To generate profiles, we used a test application that sent UDP datagrams to the discard
sener [16] on the same machingep a ©ftware loopback using theendto system call. (The
discard server simply throwsvay any data sent to it). Profilesver the loopback sheed both
sending and recding costs. The tw basic tests were to send 200,000 datagrams, each contain-
ing 64-bytes of data, and 200,000 datagrams containing 512-bytes ofTdh&tawo datagram
sizes were chosen to represent common transfer extremes: 64-bytes for small datagrams such as
those used for RPC calls and 512-bytes to represent larger datagrams such as those generated by
distributed file systems when théransfer file blocks. Because 64 and 512 are both powers of
two, and may therefore benefit fromrious memory handling routines that mighvd such
sizes, we also tested our slowest and fastest implementations with data sizes of 59 and 509 bytes.

Initial experimentation with the test application wiea that there were twminor problems
(from an &perimenters point of view) with the standard discard daemon supplied with both the
Mach and the SUN codeFirst, the recefer buffer space was not large enough. Some inbound
UDP datagrams were being dropped without being fully proces$ecbnd, the discard program
was implemented as part of a larger program thavigeal seeral services at oncelo figure out
which service had dataaiting, the application used trselect system call to find out which
soclets had receed data. Theresult was that a considerable amount of time was spent in the
select system call, which was not of interesio avoid these issues, the standard discardeserv
was replaced with a version that allocated extra meegpace and did not cadelect.

4.3. GeneralApproach

The optimizations were done indvgtages. Inthe first stage, we looked for ways to reduce
the perpaclet overhead. Thesehanges were generally simple to make, a matter of changing a
few lines of code. In the second stage we tried to inguhata handling (in particulacombine
checksum and cgpoops). Changinghe data handling code required considerably mdostef
although the payoffs pwed dramatic.

Table 1a: Initial Performance (386)
64-byte datagrams 512-byte datagrams
Code Section Time (seconds)| % of Total | Time (seconds)| % of Total
sosend 25.94 2.7% 26.33 2.6%
udp_usrreq & output 29.17 4.3% 32.17 3.2%
ip_output 14.46 1.5% 13.93 1.4%
ipintr 18.99 2.0% 18.49 1.8%
udp_input 32.29 3.4% 34.99 3.4%
in_cksum 47.64 5.0% 98.82 9.7%
soreceive 28.88 3.1% 28.73 2.8%
Total UDP/IP/Soclt 193.37 20.6% 253.45 24.9%
Total Kernel Tme 936.03 100.0% 1018.36 100.0%

5. Initial System

The initial profile of both systems is shown in Tables 1a and 1llwbélor each major rou-
tine, the table shes the total number of seconds spent in that routine and its local subroutines.
(By local subroutines, we mean those routines called by the listed procedures which are not

FromIEEE/ACM Tans. on NetworkingAugust 1993)

-7-

themseles included in the table)The listing for thap_output routine does not include the cost
of calls to the loopback interfasetutput routine.

Table 1b: Initial Performance (Sparc)
64-byte datagrams 512-byte datagrams

Code Section Time (seconds)| % of Total Time (seconds) | % of Total
sosend 10.48 5.8% 12.02 5.7%
udp_usrreq & output 23.24 12.8 20.65 9.8%

ip_output 6.56 3.6% 6.35 2.0%
ipintr 5.30 2.9% 6.38 3.0%
udp_input 15.37 8.5% 16.83 8.0%
in_cksum 12.92 7.1% 17.84 8.4%
soreceivel 9.24 5.1% 1141 5.4%
Total UDP/IP/Soclkt 83.11 45.8% 91.48 43.3%
Total Kernel Tme 181.42 100.0% 211.33 100.0%

Probably the most significant observation that can be made from these tables is that the total time
spent in the socket and UDP and IP code is rather smetl,tteough the test systems were just
running the UDP test applications. On the 386 proceggwoof revealed that amajority of the

kernel's ime was spent simply handling interrupts and managing changes in processor priority to
protect critical code gions. Onthe Sparc, less than 50% of the time in thmkl is actually in

UDP or IP codelt is interesting to obseevthat the time spentecuting UDP/IP and socket code

in both 386 and Sparc is only a factor obtepart, while the werall kernel times differ by aatc-

tor of four. A major difference between the processors is im th@y handle werhead activities.

6. ReducingPer-Packet Overhead

The first step was to try to reduce the-paclet overhead. Themprovements iwolved
either exploiting localityor replacing &cessvely general purpose code with simpler aadtér
special purpose code.

6.1. In-Line Checksum of IP Header

Although Table 1 does not shait, the initial profile showed that a surprisingly dar
amount of time on the 386 processor was spent calling the IP checksum routingirito@ind
ip_output to checksum the 20-byte IP head&he call trace shwed that about 25% of the time
in ip_input and wer 50% of the time irip_output were actually spent in the checksum routine.
In reality, this was a case @prof amortizing the cost of calling the checksum routiner @l
calls and weraging the cost of doing IP header checksums with the cost of doing checkaims o
entire datagrams. So the header checksum costs were/satiewer thargprof suggested. But
the observation still lead to a potential optimization.

A quick investigation of the checksum routine showed that it had been optimized for check-
summing long paakts. Clearlythis was not optimal for the short IP header checksum (which
must be done onvery IP datagram). Thereas a choice of approaches: the checksum routine
could be reoptimized, pgiven that the IP header checksum was almostyd done on a 20-byte
header (adding options to IP datagrams is not common), the IP header checksum could be put in-
line.

1 Time spent in soreosd des not include time spentshwait waiting for packets to awe.

FromIEEE/ACM Tans. on NetworkingAugust 1993)

-8-

For the immediate problem of the IP header checksum, the in-line option seemed best.
Most systems can checksum 20 bytes in about 6 to 8 assembler instructions, which is less than the
cost of making a procedure call (much less doing anything in the proce@areje installed an
in-line checksum. The code implemented a portable version of the checksum ipittotand
ip_output which required about 20 instructions to compute the checksum for 20-byte headers.
Headers larger than 20-bytes (i.e. IP headers with options) were still checksummed gyl#ne re
checksum routiné The 386 results are shown in Table 2a.

Table 2a - In-Line IP Header Checksum (386)

64-byte datagrams 512-byte datagramg
Code Section oldtime| newtime| oldtimel new time
in_cksum 47.64 30.29 98.82 85.46
ip_output 14.46 16.27 13.93 15.60
ipintr 18.99 21.26 18.49 20.93
Time Improvement 13.27 9.25
% UDP/IP Impravement 7.9% 4.0%

The results appear to confirm the utility of the in-line checksum. The cost of doing the in-
line checksum caused a modest increase in the cgstaftput andipintr but produced a sharp
reduction in checksumming costs.

When the SUN code was examined ityamto dready hae an in-line IP checksum imple-
mented inipintr and in the NFS ersion ofip_output. Howeve, the regularip_output routine
did not hae a in-line checksum, so we added Tiable 2b shows the impvement.

Table 2b - In-Line IP Header Checksum (Sparc)
64-byte datagrams 512-byte datagramg
Code Section oldtime| newtime| oldtimel new time
in_cksum 12.92 10.05 17.84 17.20
ip_output 6.56 4.94 6.35 5.49
Time Improvement 4.49 1.50
% UDP/IP Impravement 4.4% 1.4%

One oddity of both Tables 2a and 2b is thagdadatagrams benefit less in absolute time from the
elimination of the call to the checksum routir@n the 386, large packetsveaa lttle over 9 sc-
onds, while small packets\&aove 13 conds. Similarlyon the Sparc, lge packets s& aly

1.5 seconds while small packetseaearly 4.5 seconds. This difference is consistent acress se
eral profiles. The ne code contains no dependgnan the length of the packet, so we bedie
(but have keen unable to pue) that this difference represents ertel effect probably related to
interactions between interrupts (which are more likely to interrupt processinggenpiackts)

and instruction and data cache management.

6.2. DeletingPseudo-Connect

In the BSD system, UDP datagrams can be sent in oneoofvéiys. Asoclet can fix its
remote UDP address by using ttennect system call, after which the socket can only be used
for sending to the address it is connected@a. a ©cket can usasendto to individually set the
remote address for each UDP datagram sent.

2 No IP headers with options were sent by the test application.

FromIEEE/ACM Tans. on NetworkingAugust 1993)

-9-

In the 4.3 BSD code, usirggendto with an address is treated as a special case of sending
over a mnnected soat. Thecode inudp_output goes through the standard procedure for inter
nally connecting a remote address to the UDP edtsckrotocol control block (PCB), sends the
datagram, and then disconnects the remote address.

No packets gower the network for the connect procedure, but the operations of connecting
an address are still verggensve and consume nearly a third of the cost of each UDP transmis-
sion. Thereare sgeral reasons for this expense.

First, binding creates a race conditiaturing the time the remote address is set in the PCB,
the socket cannot reeei inbound datagrams from yasystem other than the one it is sending to.
This race condition occurs because on the inbound wiffe,input scans the list of UDP PCBs
looking for a PCB that matches the source and destination address(es) of the inbound datagram.
There is a chance that if an inbound datagranvesridvhile a socket has temporarily bound its
destination address duringsandto call, a mistaken match (or failure to match) may ocdar
avdd this race conditionydp_usrreq must switch to a higher processor prioritydeto block
out input interrupts. On the 386 changing the processor priovigdyiseexpensve.

Second, the routine for binding to a remote address is a general purpose routine, intended to
be called at connection setup time, and is not optimized to be callecefprdatagram.Calling
it repeatedly is expens.

To fix this problemudp_output was revised to send to a specified remote address without
changing the socket PCB. This eliminated the race condition and got rid of the call to the general

purpose connecting routine, although some code from this routine had to be copied into
udp_output.3

The performance impvements are in the sending side and in the priority management
code, and are shown in Tables 3a and e impravement in performance is significant.

Table 3a— Deleting Pseudo-Connect (386)

64-byte 512-byte
Code Section Time % of Total Time % of Total
Priority Mgmt/Interrupts (old) 543.32 58% 572.14 55.7%
Priority Mgmt/Interrupts (ne) 541.30 60.2% 550.55 56.1%
udp_usrreq & udp_output (old) 29.17 4.3% 31.17 3.1%
udp_usrreq & udp_output (new) 17.95 1.9% 17.87 1.8%
Total UDP/IP/Socket Impneement 11.22 6.6% 13.30 5.5%

Table 3b— Deleting Pseudo-Connect (Sparc)

64-byte 512-byte
Code Section Time % of Total Time % of Total
Priority Mgmt (old} 1.53 0.8% 2.07 1.0%
Priority Mgmt (nev) 1.58 0.9% 2.15 1.0%
udp_usrreq & udp_output (old) 23.24 12.4% 20.65 9.6%
udp_usrreq & udp_output (new) 9.22 5.1% 12.78 6.0%
Total UDP/IP/Socket Impngement 14.02 7.5% 7.87 3.7%

3 The 4.4 BSD implementation has gone further and actually restructured the UDP data structures so that
a mnnected socket is an exceptional case of a unconnected socket rather than the other way around.

4 Improvement percentages are measured against the time spent in UDP/IP code in the original code.
5 For the Sparc profile, it was possible to partially isolate the calls to part&pillaoutines by the UDP

FromIEEE/ACM Tans. on NetworkingAugust 1993)

-10-

6.3. Improved One-Behind Cache(s)

A one-behind cdte contains the PCB of the last UDP socket to rerai ditagram. The
reason for keping the one-behind cache is that there is a good chance that the next datagram
receved will be destined for the same socket as the previous datagrametecieeping the
cache makes it possible teodd a more expenge sarch of all the UDP PCBs.

6.3.1. Fixingthe Reno Cache: Wildcard Support

On the 4.3BSD Tahoe release, UDP does ne¢ lsame-behind cache of the UDP PCBs.
However, the 4.3 BSD Reno release does and we incorporated the Reno cache into our UDP code.

But when we tested the cache performance, the Reno cache had no effect. The problem
turned out to be that the caching code did not support wildcardlifigicarding is the practice of
specifying only part of the remote or local address and acceptingatue for the remaining
fields. Inthe BSD code, UDP addresses can be classified into three types:

(1) [<laddtlport><faddr,fport>]

(2) [<laddrlport><*,*>]

(3) [<*lport><**>]
where [If]port is the local or foreign UDP port, [Ifladdr is the local or foreign IP address, and * is
a wildcard (i.e. ‘don’t care’). Whenan inbound UDP datagram is reasl, the UDP code looks

for the most complete (least wildcarded) address match it can find anetdétie data to that
socket.

One problem with wildcarding is that it makes cachindidlift. Considerfor example, a
datagram that amés and matches an address of type (Blow suppose that the next aritig
datagram wuld match both the same type (3) address, but also a more complete address of type
(2). If the PCB of the first datagram is placed in a cache, the second datagram wil fnigk
cache hit. The cache hit ial§e because while the second datagram matches the type (3) address,
it should be deliered to the type (1) address it matches more compleWéy aall this problem
cache hiding because the type (3) address in the cache hides the existence of the preferred type
(1) address.

Unfortunately wildcarding is very common in BSD applicationglost UDP servers do not
fix their remote address or local IP address,simply accept all inbound UDP datagrams sent to
their reserved UDP port. By simply binding to the local paut, it an address, the servers on
multi-homed systems (systems with more than one IP address) are ableetakdagrams
regardless of the interface therrived on. TheReno cache will not cache wildcard addresses (to
avdd cache hiding) and therefore fails tosban effect on most applications (including our tests).

We enhanced the Reno cache code tovaltbe cache to contain wildcard addressés.
solve the problem of cache hiding, the routines that add andvemtnresses from a PCB were
modified to detect potential cases of cache hiding and to mark as uncacheable those PCBs that
could cause cache hiding.

6.3.2. Moguls Suggestion: Caching the Sendes PCB

Mogul [8] has recently done a study of the locality of networKitréthat shows that half of
all UDP datagrams reasid are replies to the last UDP datagram sefttis suggests that a one-
behind cache of theendingPCB might hae an efect.

code, so only this code is measursplifet, spl3 andsplx called by UDP output routines).

FromIEEE/ACM Tans. on NetworkingAugust 1993)

-11-

As with the one-behind receiving cache, wildcarding is a concetnthe same marking
algorithm works. Sendindg®CBs that would causzche hidingare not cached.

6.3.3. SUNCaching and Wildcards

SUN OS 4.1.1 turned out tovea loken one-behind cache of receiving PCBs which could
cause data to be misdedied to the wrong application, due to a failure to detect cache hiding.
We replaced the SUN cache code with ours.

6.3.4. Cachingimpr ovements

Testing the effects of the caching impements was difcult. Runningthe tests on a
“quiet” machine (a machine ree@ig no traffic other than our tests) wouldaireproduceable
results. Bul quiet machine would not @& nmuch indication of hev a real workload would inter
act with the caching algorithm$unning on an aaté machine, hwever, meant the results might
not be reproduceable.

In the end we compromised. The 386 test machiag aready an isolated machine, so it
was tested using the standard program sending 200,000 datagfdmse results are shown in
Table 4a.

Table 4a — Improved Caches (386)
64-byte 512-byte
Code Section Time % of Total Time % of Total
udp_input (old) 32.29 3.4% 34.99 3.4%
udp_input (new) 24.03 2.7% 23.63 2.4%
Total UDP/IP/Socket Imprgement 8.26 4.8% 11.36 4.7%

It should be noted that these results are probably still misleading, docomilicting reasons.

First, the simple test application acked a 100% cache hit rate. Second the test system was run-
ning a minimum of user applications, so the UDP PCB cache was somewhat smaller than normal.
Fawer applications makes a normal PCB lookup legersve and tends to understate the bene-

fits of caching.

In the second test, the caching codesswun on a SUN workstation that served both as a
client and a file seer and profiled the code with the original SUN cache, the wedroache
code and with the cache turned. oBy picking a workstation that did some work as both file
sener and client we hoped to get a reasonable mix didrafFurthermorethe SUN had a more
normal number of aste UDP applications: between 60 and 65 UDP sockets operyaiivan
time. Eachtest lasted for about 2-1/2 hours on a normal business day during which roughly
100,000 UDP datagrams were reeedi Theresults of these tests are shown abl€ 4b All
time values hae been normalized to 100,000 packets sy tre comparable.

Table 4b — Improved Caches with Traffic (SUN)
no-cache SUN cache newache
Time inudp_input 17.44 14.16 11.37
udp_input without socket code 8.82 5.07 3.44
% of hits in recever cache M\ 59% 57%
% of hits in sender cache NA NA 30%

6 In other wordsudp_input without the calls to the socket layer buffering routines.

FromIEEE/ACM Tans. on NetworkingAugust 1993)

-12-

The most important obseations on the SUN are that caching is clearly beneficial and the sender
cache pays bgplendidly, improving performance by about 50% more than just the veiceache
alone. (Recalthat the SUN cache scheme suffers from cache hiding and can ms-dala; we
include it to illustrate the effects of reeei-only caching).A thorough analysis of these issues by
McKenneg/ and Dove [9] has shown thatven under demanding traffic loads, this caching scheme
performs well. (Mckenng and Dove dso identified a more sophisticated algorithm that performs
better under high loads withvid ocality).

6.3.5. OtherPatential Cache-Related Impovements

The cache hit rates on the sender and veceaches were so high that we decided that try-
ing to optimize the PCB lookup code further was not fruitfidbwever, we had prepared ta
additional optimizations and we discuss those optimizations here on the groundsythatythe
interesting in other situations.

First, the original PCB lookup routine is rather fi@ént. It scans a linked list of UDP
PCBs looking for a PCB thakactly matches the incoming datagram (on both source and desti-
nation address). While scanning the list, the routine also notes the best wildcard match for the
datagram. Ithe routine finds an exact match, it immediately returns the exact match. If the rou-
tine fails to find anxact match after scanning the entire list, it returns the best wildcard match, if
ary. The ineficiency comes in haing to scan the entire list before returning a wildcard. In the
original 4.3BSD code, the lookup routine had to cheekyePCB before returning a wildcard to
protect against cache hiding. But in our code, wildcard PCBs that may cause cache hiding are
marked. Thusif a wildcard that does not hide another PCB is found, the lookup routine can
return the wildcard match immediatelGince most applications use wildcarded PCBs, this
enhancement should shorten tierage PCB search time by roughly 50% (half the length of the
search list).

Another optimization (suggested to us by Gary Delp of IBM) is tovenfequently
accessed PCBs to the front of the PCB list. An easy implementation of this idea iset@mo
PCB to the front of the PCB list wharee it is accessed. ThCB list is doubly linked so mve
ing is an easy operation and the algorithm will tend to cluster heavily used PCBs at the front of
the list. Obsenre that this algorithm works best if the PCB lookup routine has already been modi-
fied to immediately return a wildcarded PCB that does not cause cache Hitliegxpected
result of this optimization would be to shorten tlverage PCB search time to justawr three
comparisons.

6.4. Improving Sendit Performance

Recall that the 386 processor spent a majority of its time in the routines to manage changes
of processor priority This observation led us to try to findays to reduce the calls to these rou-
tines. Thegoal was to find imprements that would significantly help the 386 and also ingro
performance (though perhaps only a little) on the Sparc.

The BSD networking code changes (or at least, checks) the process priority quitEa bit.
example, when a paek arrves, the processor priority must change at leasttiines before data
reaches the user:

(1) First,the network interface must interrupt and after reading theepattie netwrk
driver routine schedules a software interrupt at a lower prioritypiatr;

(2) ipintrin turn calls the transportue routine which places the data on the applicasion’
input queue

(3-5) afteripintr completes, the processor priority can be reduced to the lowelsare the
application will try to read the data from the quettowever, to protect against race

FromIEEE/ACM Tans. on NetworkingAugust 1993)

13-

conditions in the input queue, the processor priority must be raised todhasked by
ipintr while the queue is being manipulated, then reduced again.

In fact, there areven more priority changes than these, as the agting code often must briefly
lock out higher priorities while manipulating shared data structures.

One should obseevthat the intermediate priorityvel for ipintr is superfluous and could be
removed (all inbound data could be processed at application prioriti)s would impree per-
formance of both the input and output code, as the output code would no longdo tése its
priority level to avoid race conditions with the input codédowever to make that change wuld
have required us to restructure all the BSD networking code.

We were, howeer, ale to identify a more modest imp@ment in thesendit routine.

When an application calls tlsendto system call, it passes down the address to which the
datagram is to be sengendit, in turn, allocates a kernel memoryfter, copies the address into
the memory bffer, and passes theulfer containing the address smsend and udp_usrreq.
After the datagram has been seetndit frees the memory buffer.

There is a small iné€ieng in this process.Sendto is a frequently-used system call, so
sendit is constantly calling theuffer management routines to allocate and freeffeb These
routines are not veryxpensve themseles, but the do require a change in processor priqrity
because memoryffers sometimes lva © be dlocated by device drers (which run at a higher
interrupt level than the networking code). Thus, if we could reduce the calls touffer lnan-
agement routines, the time spent managing processor priority changes should go down.

So we changedendit to try to avoid freeing memory bffers. Theroutine keeps a one
pointer cachelf sendit is about to free a memoryfber, it first checks the cache. If the pointer
is null, it saves the memory bffer in the cache, otherwise it frees thdfér. Before allocating a
memory luffer, sendit first checks to see if there is after in the cache; if so, it uses the cached
buffer. Note that this scheme works because the memgifgrs in the BSD system are adik
size.

The results for the 386 processor were encouraging and are shown in Table 5a.

Table 5a — Improved Sendit (386)
64-byte 512-byte
Code Section old new old new
Priority Mgmt/Interrupts 541.30 511.37 550.55 529.25
sendit 53.28 47.76 51.75 53.76
Total Improvement 35.45 19.31
% Improvement 3.8% 1.9%

The 386 impreements represent about a 2% to 4% impneent in kernel performance and the
reduction in time in priority management code for 64-byte packets is equal to nearly a third of the
time spent in UDP and socket code.

We epected impreements on the Sparc to be less notable, largely because changing pro-
cessor priority leels on the Sparc is much cheapétoweve the Sparc impreements were use-
ful. Theresults are shown in Table.50The Sparc costs farendit include the costs of calls to
priority routines).

7 The latest 4.4BSD release will eliminate this priorityele

FromIEEE/ACM Tans. on NetworkingAugust 1993)

-14-

Table 5b — Improved Sendit (Sparc)
64-byte 512-byte
Code Section old new old new
sendit 22.30 19.27 24.26 22.54
Total Improvzement 3.03 1.72
% Improvement 1.6% 0.8%

The impravement is equal to about 1% to 2% of total kernel time.

7. ReducingData Handling Costs

After reducing the pepaclet overhead, we wrked on reducing the data handling costs.
The structure of the BSD codedaty dictated that there be dvdata copies on both transmission
and receipt of data plus a checksugince neither copcould be eliminated without completely
rewriting the BSD code, we focussed on trying to reduce costs by combining the checksum with
one of the coploops.

7.1. Combiningthe Checksum and Copy Loops

Over the past f@ years, there has been much discussion of the possible merits of reducing
the number of times that the data in a datagram must be scanned by reducing the number of data
copies between different memory angffer spaces and by combining the checksum and data
copy loops. (Thiddea is beliged to haveoriginated with Van Jacobson).

The standard BSD code scans data three times on both input and @mpattput, the
data is copied from user space to kernd#fdrss, checksummed, and then copied froamnkl
buffers to interface memaryThe same operations are done on input, butvarse order The
copies between kernelffers and intedice memory are often done with some hardware assist,
such as DMA, but the copies between user arddt space and the checksum are all done in
software. W changed the UDP code to do the gdmetween user and kernel space and the
checksum in a single loop.

7.1.1. Changeso Code

Since checksums can be protocol specific, the code to do copies and checksums had to be
done in a protocol specificay. The logical approach, therefore, was to add someengries to
the protocol switch tablelnitially, we tied simply adding protocol specific data gaputines to
the protocol switch table but this turned out to mtie already complicated socket routinesne
more comple.8 Making code more comptalid not seem desirable, so we tried another approach
and wrote protocol-specific versions sisend andsoreceive and placed them in the protocol
switch table.

In this nev version of the code, when a datagram is ssehdit calls udp_sosend.
Udp_sosend does some error checking, then copies and checksums the data from user space,
adds the UDP protocol headend callsip_output with the UDP datagramThus a chain of
three procedure callssgsend, udp_usrreq, udp_output) was reduced to a single call to

8 The list of added complexities is long and not very edifyiRg: those who are curious, here are a tw
examples of the problems encountered. First, having protocol-specific dataaigmes meant that the
soclet code had to be recoded to either use thecogy routines, if thg existed, or the old coproutines if
there were no protocol specific routineSo already compiecode to manage data copies was madm e
harder to read Another problem was communication with lower layéerow does the socket layer pass the
partial checksums it computes down to the UDP layer on outdat® does the UDP input routines pass up
partial checksum information to socket routines on input?

FromIEEE/ACM Tans. on NetworkingAugust 1993)

-15-

udp_sosend. Furthermore, becausglp_sosend is protocol-specific, we were able to eliminate
a lot of unnecessary tests and reduce the number of critical regions that had to be protected.

On the receiving side, the code is a bit more cormplep_input was changed to compute
the checksum on the UDP header (but not the UDP data) and thererbed&DP header from
the datagram. The remainder of the datagram, along with the partial checksum and the length of
the UDP datagram are then passeditappendaddr, which queues the datagram to be read by
the application. When the application does the resayjit calls a UDP-specific version ebre-
ceive, which checksums the data while go the data into application memorif the check-
sum is correct, then the read completfghe checksum fails, one of onthings happens. If the
application is not non-blocking, the read routine simply waits for the next datagranvéo Hrri
the application is non-blocking, and there are no additional datagrams immediitelg wo be
processed, the routine returns an error indicating the read would BM&RIJLDBLOCK).

Obsere that this nev version of the receing code implies tw minor changes to the
semantics of reading from a setk First,a non-blocking application which learns fronsalect
call that data is waiting to be read may get an unexpected eEWWQULDBLOCK) if the data
fails to checksum.Second, because the checksum can only be confirmed after the data has been
copied, an applicatiog’tuffers will be changedven if the read call fails.

The ley pece of code that both copies and checksums the detawitten in assembler for
both the 386 and Sparc systeniShe authors would lig& to hank Van Jacobson for providing the
assembly code for the Sparc).

7.1.2. Rerformance Improvements

Combining the copand checksum loops requiregtensve changes to the UDP implemen-
tation. Inaddition to combining the twloops, calling paths ka been changed, and old code is
often &ecuted in ne/ places and at different priorityMels. Asa result, direct comparisons of
old and ner code are somewhat ddult. However, there were dramatic imprements.

The effect of combining the checksum andycamps is to reduce three memory accesses
to two. Thecopy loop had one read and one write for eacidiwof data, and the checksum had to
read the data again, for a total of three accesses. The combined loop readsréacto & rgis-
ter, adds the word to the running checksum, and then writes the word, thus givingdwesses
plus an addition. Intuiiely, one would look for about a one third impement in speed.

In fact, the impreement was substantially more, as can be seen in Tables 6a and 6b, which
compare the time spent in the checksum ang coptines before and after the changd@ese
results are shown in Tables 6a and 6b.

Table 6a: Combined Checksum and Copy (386)
data size befoe ater impr ovement %
64 bytes 51.57 27.56 24.01 46.6%
512 bytes 108.59 65.57 43.02 39.6%

9 The *before’ numbers are the costs of calling batlomove (the coyy routine) andn_cksum. They
are from a profile taken after the ip header checksum code was optimizethffEnénumbers are the cost
of callingin_uiomove which both mees and checksums in one loop.

FromIEEE/ACM Tans. on NetworkingAugust 1993)

-16-

Table 6b: Combined Checksum and Copy (Sparc)
data size befoe dter impr ovement %
64 12.40 4.40 8.00 64.5%
512 20.20 5.0 15.2 75.2%

For both 386 and the Sparc, tests of theyeopecksum routines suggest that, for some
inputs, the combined routines are faster than the origingl apines thg replaced! The386
code was written by the authors and was carefully designed to fit inside the small cache of the 386
processor we were usingTests of the same code with other processors with different cache sizes
gave snaller performance impuements). TheSparc code provided Van Jacobson was modified
by the authors to fit into thesknel. Thesenodifications made Jacobsemoutine slightly slaver
but still substantially faster than the existing gamde in the Sparc.

8. Summaryof Impr ovements

The incremental discussions of impements abee may male it difficult to assess the total
performance impnement. Thissection summarizes the impaments and discusses the signifi-

cance of the results.

8.1. Owrall Impr ovements

Tables 7a and 7b compares the total impneent between the intial (unoptimized) system

and the final (most optimized) system. In addition to the regular data sizes of 64 and 512 bytes,

the sizes of 59 and 509 were tested tonstiat the performance imprements are not restricted
to data sizes which are powers of two.

Table 7a: Total Performance Improvement (386)

59 bytes 64 bytes 509 bytes 512 bytes
initial UDP/IP & soclet 202.19 193.37 264.21 253.45
optimized UDP/IP & soaht 134.91 140.88 181.37 177.05
UDP/IP & socket impreement 74.86 66.31 90.46 85.57
initial total kernel 927.12 936.03 1034.35 1018.36
optimized total kernel 808.63 811.50 869.76 854.58
total kernel imprgement 118.49 124.53 164.59 163.78
% UDP improzement 36% 32% 33% 32.6%
% Kernel improement 12.8% 13.3% 15.9% 16.1%

Table 7b: Total Performance Improvement (Sparc)

59 bytes 64 bytes 509 bytes 512 bytes
initial UDP/IP & soclet 92.32 83.11 93.00 91.48
optimized UDP/IP & sooht 55.57 58.53 68.95 64.17
UDP/IP & socket impreement 36.75 24.58 24.05 27.31
initial total kernel 184.40 181.42 207.06 211.33
optimized total krnel 151.00 147.77 178.25 175.15
% UDP improvement 39.8% 29.6% 25.9% 29.9%
% Kernel imprarement 18.11% 18.54% 13.9% 17.1%

The results are generally very goodDP performance across both CISC and RISC sys-
tems impreed ébout 30% anderall kernel performance impved between 12% and 18%

FromIEEE/ACM Tans. on NetworkingAugust 1993)

-17-

8.2. Significanceof Results

We st out to optimize UDP as ameecise in applying optimizations used on TCP to other
protocols. Broadhgpeaking, the optimizations that worked well took one of three forms:

1. Cacheswvere used toxploit locality. A one-behind sender and reasicache vas
added. Miofs were cached isendit.

2. Expensie general purpose code was replaced with code tuned to the particular proto-
col. Sosend was replaced withudp_sosend and the IP header checksum was com-
puted in-line rather than in a general purpose subroutine.

3. Memoryaccesses were reduced. In this experiment, the checksum andioopp
were combined.

These all are general techniqueBhey worked well when applied to TCP andvieaworked
equally well when applied to UDFRecent work by Sample and Neufeld has shown that these
same techniques can also be applied to makitegreal data format cemsrsion run fast [17].The
implication is that these techniques should be routinely applied to protocol implementations.

8.3. OptimizationsNot Tested

There are at least three optimizations that areseli® improve potocol performance that
could not be tested in our test environment.

The first optimization is to build a better network inded. Asprotocol processing costs
have been reduced, it has become increasingly clear thatorletslevice drvers are often both
performance pigs (requiring lots of code to manage) and manage ufi&is Ipoorly (causing
increased werhead in data handling). Recently there has been consider success in building better
network interfaces, most notably the Medusa and Afterburner interfaces built by a team at
Hewlett Packard [13,14]. These interfaces are designed to minimiieeddriver complexity (it
is a matter of a fe instructions to send or regeia @cket) and preide better bffer manage-
ment. Unfortunatelyan nterface built along these linesaw not sailable for either of our test
systems.

The second optimization is to try to imgeo@de locality and reduce instruction cache
misses in the processdn RISC processors, it is also possible to inyerranch predictions and
minimize branch stalls. Promising results in this arezeh®en reported by Speet. al.[18]
However, neither of our tests systems had the compiler support necessapetorent with this
type of optimization.

Finally, there has been some interesting work with paralleli$vork by Bjbrkman and
Gunningbeg with TCP [19] and Asthanat. al.on a parallel router [20] suggest that by striping
entire datagrams (rather than pieces of the datagrams) across processors, it may be possible to
achieve better TCP and IP performancenfortunately we dd not hae access to a multiproces-
sor machine to test these ideas.

8.4. Generalityof Results to Different Hardware Bases

The performance imprvements were done on both a CISC processor and a RISC processor
to evaluate the impact of various performance inygraents on different systems.

One of the interesting results is thatcept for the extraordinaryerhead (particularlypri-
ority management and interrupt code) of the 386 processur optimization had a similarfett
on both processors. This suggests, though by no meaves ptioat the optimizations are general
rather than processor specific.

Recently theres been some debate about whether combining the checksum antbopp
is a general solution or specific to certain machine architectures. The evidence whabme

FromIEEE/ACM Tans. on NetworkingAugust 1993)

-18-

mixed.
Table 8: Cost of Adding Checksum to Copy Loop

System copy copy and checksum additional cost

ns/byte ns/byte ns/byte
HP9000/370 122 144 18%
Sparcstationl 164 177 8%
Sparcstation2 109 109 0%
HP9000/720 54 54 0%
DECstation 5000/133
(R3000 CPU) 82.5 99.5 20%
DECstation 2100
(R2000 CPU) 288 292 1.4%
Values for HP9000s and Sparcstations from Van Jacobgalues for DECstations
from Peter Desngers. All values are for transfering uncached data. Results for
cached data typically stslightly higher costs for adding the checksum.

Tests on a number of machinesreahown that a combined cgpand checksum loop runs
only very slightly slower than the cppoop alone. The results forvaeal different workstations
architectures are summarized in TableHbwever, in systems where the only memory gois
between applicationuffers and the network interface, it may be moffecient to do the data
copy using DMA rather than a software loop [21]. The emerging principle seems to be that if one
has to do a cgploop using software, then the checksum should be combined with théoomp
because the checksum adds very little to the cost. But if the datascogst done by hardave,
other mechanisms for performing the checksum need to be found.

8.5. Conclusion

Recently Van Jacobson has informally reported improving TCP/IP and UDP/IP performance
in BSD by as much as 95%, by doing a complete reimplementation of the protocols ékat tak
greater advantage of manof the performance enhancements mentionedveaboThe
improvements discussed in this paper are much more modest, but in theaam®urconclu-
sion is that may problems experienced with protocol performance are more appropriately
blamed on implementations than the protocols themselves.

9. Acknowledgements

Thanks to seeral members of the EndsdEnd Interest mailing list for seral helpful com-
ments and notes while weovked on this dbrt. Speciathanks are due to Van Jacobson, ynain
whose ideas are reflected in this work, and who graciously volunteered his code for the combined
checksum and cgdoop on the Sparc.

Appendix I: 386 Copy and Checksum Code

As an eample of the combined cg@nd checksum code, here is an excerpt from the user
space version of the code for the 38&te that this routine returns the 1's-complement suen 0
the data - to generate the full IP checksum requires the sum to be complemented.

/ C calling convention:
/in_bcopy(from,to,count,xsum); char *from, *to; int count; unsigned short *xsum
/ copycount bytes betweefiom andto and put sum ixsum

FromIEEE/ACM Tans. on NetworkingAugust 1993)

-19-

_in_bcopy:

ibL1:

ibL2:

pushl %edi

pushl %esi

pushl %ebx

pushl %ecx

pushl %edx

movl 20 +12(%esp),%edx
movl 20 +8(%esp),%edi
movl 20 +4(%esp),%esi

movl $0,%eax
movl %edx,%ecx / copy the byte count
js ibout

sarl $5,%ecx
dec %ecx
jl ibL2

addl (Yesi),%eax
movsl|

adcl (Y%esi),%eax
movsl|

adcl (Y%esi),%eax
movsl|

adcl (Yesi),%eax
movsl|

addl (Yesi),%eax
movsl|

adcl (Yesi),%eax
movsl|

adcl (Yesi),%eax
movsl|

adcl (Yesi),%eax
movsl|

adcl $0,%eax
dec %ecx

joe ibL1

References

/ save various egsters

/ 20 for 5 pushes onto stack

/ zero the initial xsum

/ if byte count negativejuit now

/ start by adding groups of 8 long words
/ count down to enter loop

/ jump to code to do smaller units of data

/ this ordering runs best in our cache

/ fold in carry bit befoe doing dec
/ decrement 8 long wdrcount

/ fall through to code to handle

/ smaller units of data

/do remaining data here

1. JonB. Postel, “User Datagram Protocol; RFC-76&ternet Requests for Comments.
768, August 1980.

2. V. Srinivasan and Jéky C. Mogul, “Spritely NFS: Experiments with Cache-Consisienc
Protocols, Proc. 12th £M Symposium on Operating Systems Princjdléshfield Rark,
Arizona, December 3-6, 1989.

3. V. Jacobson, “4BSD Header PredictibriComputer Communication Rew, vol. 20, no. 2,
pp. 13-15, ACM SIGCOMM, April 1990.

4. BV. Mockapetris and K. DunlagDevelopment of the Domain Name Systén®Proc. ACM
SIGCOMM 88 pp. 123-133, Stanford, USA, 16-19 August 1988.

FromIEEE/ACM Tans. on NetworkingAugust 1993)

-20-

SunMicrosystems, “NFS: Network File System Protocol specification; RFC-10@&der-
net Requests for Comments. 1094, March 1989.

D.L. Mills, ‘‘Network Time Protocol (Version 3): Specification, implementation, and analy-
sis; RFC-1303, Internet Requests for Commenit®. 1305, DDN Netwrk Information
Center, March 1992.

D.D.Clark, V. Jacobson, J. Ronaly, and H. Salwen,’A n Analysis of TCP Processing €v
head; IEEE Communicationsol. 27, no. 6, pp. 23-29, June 1989.

Jefrey C. Mogul, “Network Locality at the Scale of Proces$eBroc. SIGCOMM '91
Zurich, Switzerland, September 3-6, 1991.

PE. McKenng and K.F Dove “Efficient Demultiplexing of Incoming TCPaekets, Proc.
ACM SGCOMM 92, pp. 269-280, Baltimore, MD, August 1992.

J.Kay and J. Bsquale, “The Importance of Non-Data Touching Processing Overheads in
TCP/IR” Proc. ACM SIGCOMM '93San Francisco, USA, 15-17 September 1993.
D.D.Clark, SIGCOMM Awad Lecture 1990.

V. JacobsonTutorial Notes from SIGCOMM '9CPhiladelphia, USA, September 1990.
D. Banks and M. PrudenceA‘High Performance Network Architecture for A-RISC

Workstation, IEEE Jur. Selected Areas in Communication®l. 10, no. 1, pp. 191-202,
February 1993.

G.Watson, D. Banks, C. Calamvokis, C. Dalton, A. Edds, and J. Lumye “A fterburner:
Architectural support for high performance protocblsEEE Network Mgazine vol. 7,
no. 4.

S.JLeffler, M.K. McKusick, M.J. Karels, and J.S. Quarterm@he Design and Implemen-
tation of the 4.3BSIINIX Operating Systenpp. Addison-Wesley, 1989.

JonB. Postel, “Discard Protocol; RFC-863|nternet Requests for Comment®. 863,
May 1983.

M. Sample and G. Neufeld, “Implementing Efficient Encoders and Decoders fooitetw
Data RepresentatiotisProc. IEEE INFOCOM '93pp. 1144-1153, San Francisco, USA, 30
March-1 April 1993.

S.E.Speer R. Kumar and C. Rrtridge,Improving UNIX Kernel and Networkingeffor-
mance using Profile Based Optimization (Technical Repbugjust 1993.

M. Bjorkman and PGunningbeg, “Locking Effects in Multiprocessor Implementation of
Protocols, Proc. ACM SIGCOMM ’93San Francisco, USA.

A.Asthana, C. Delph, H.\Magadish, and AKrzyzanavski, “Towads a Gigabit IP Routgr
Jour. of High Speed Networksol. 1, no. 4, pp. 281-288, 1992.

J.M.Smith and G.Q. Maguire,.J'Measured Response Times for Page-Sized Fetches on a
Network] ACM SGARCH Computer Ahitecture News, vol. 17, no. 5, pp. 71-77, Septem-
ber 1989.

FromIEEE/ACM Tans. on NetworkingAugust 1993)

