
 C
O

M
P 310 - Joseph V

ybihal 2006

1

Comp 310
Computer Systems and

Organization

Lecture #12
Process Management

(Deadlocks)

Prof. Joseph Vybihal

 C
O

M
P 310 - Joseph V

ybihal 2006

2

Announcements
• Oct 16 Midterm exam (in class)

• Tutorial times posted on web CT
– Wednesday 12:00-13:00, Trottier – Theresa
– TBD

• Old exam on web CT

 C
O

M
P 310 - Joseph V

ybihal 2006

3

Midterm Exam Format
• Four questions

– Definition questions (1 to 2)
– Analyze and fix (0 to 2)
– Analyze and describe (1 to 2)
– Pseudo-code (0 to 1)
– Actual C code (0)

• Material on Exam
– Material including this lecture
– Historical and current OS architectures
– The components of a modern OS
– Implementation of the User Interface
– Executing multiple processes & OS run-time states
– Inter-process communication and synchronization problems
– Thread implementations
– OS Scheduling problems
– Deadlock graphs, semaphore problems and algorithms

Architectures
User Interface
Process Management

 C
O

M
P 310 - Joseph V

ybihal 2006

4

Basic OS Architecture
(Course Table of Contents)

User Interface

Memory Manager

Process Manager

Network Manager

Hardware Manager

Disk / Storage Manager

Phase 1

Phase 2

Phase 3

Security Phase 4

 C
O

M
P 310 - Joseph V

ybihal 2006

5

Kernel Design
while (!done)
{

RunPtr = deQ(Ready);
 // 0 1 to n n+1 to m

returnCode = contectSwitch(RunPtr); // quanta, interrupt, service request

// Standard run-time overhead

switch(returnCode)
{

case 0:
enQ(RunPtr);
RunPtr = NULL; // optional
break;

}

// System overhead

detectDeadlock();
}

 C
O

M
P 310 - Joseph V

ybihal 2006

6

Part 1

Preventing Deadlocks

 C
O

M
P 310 - Joseph V

ybihal 2006

7

Three Methods

• Changing the necessary conditions, or
• Avoiding deadlocks, or
• Do nothing, then recover from a deadlock

(detecting deadlocks)

 C
O

M
P 310 - Joseph V

ybihal 2006

8

Changing the necessary
conditions

 C
O

M
P 310 - Joseph V

ybihal 2006

9

Necessary Conditions
• Mutual Exclusion
• Hold and Wait

– A process must be holding at least one resource
and waiting to acquire another that is being held

• No pre-emption
– The OS does not permit pre-emption of held

resources
• Circular wait

– {P1, P2, P3} s.t. P1 P2  P3  P1

 C
O

M
P 310 - Joseph V

ybihal 2006

10

Changing Mutual Exclusion
• Some resources are intrinsically non-sharable:

– Printers, …

• Solution: Extreme exclusion
– Single processor single process systems

• One program runs until completion
• Limited or no protection of resources
• Trust programmer to code properly

– Eg: MS DOS environment

• Is this a good solution? Why or why not?

 C
O

M
P 310 - Joseph V

ybihal 2006

11

Changing Hold and Wait
• Alternatives:

– Use a job-control-language that tells the OS all the
resources the program will need before it begins to run.
The OS runs the program only after all those resources
are available. They all get assigned to the process at once
and are held until the process ends.

– The Unit Request method uses a programming command
to request a subset of resources all at once. These are
held until not needed.

• Two Problems:
– Low resource utilization
– Starvation still possible (i.e. not deadlocked)

 C
O

M
P 310 - Joseph V

ybihal 2006

12

Changing No Preemption
• Alternatives:

– The wait-queue release method automatically
releases all held resources when a process is put
on the wait-queue.

– The rob-a-resource method locates the process
on the ready-queue currently holding that
resources and takes it away (puts it on wait-
queue).

• Side effects:
– e.g. Files take a long time to find and buffer
– Used for resources who’s state can be quickly

redefined

 C
O

M
P 310 - Joseph V

ybihal 2006

13

Changing Circular Wait
• Solution:

– Rule 1: Enumerate all resources R={R1, R2,…Rn}

– Rule 2: Access resource in increasing number
– Rule 3: If a resource is needed from a lower number

then process must release all higher numbers
• Proof:

– If R0 to Ri in use and needs Ri+1
– Implies Ri < Ri+1
– But if Ri is Rn then circular and not legal (Ri > Ri+1)
– Assumes modulo arithmetic

• Starvation still possible

 C
O

M
P 310 - Joseph V

ybihal 2006

14

Part 2

Avoiding Deadlocks

 C
O

M
P 310 - Joseph V

ybihal 2006

15

The Safe State Concept
IDEA: The “Safe” State -

A sequence of resource requests exists so that no
deadlock can result - called a “safe sequence”

METHOD:

A special OS resource table has extra fields initialized at run-
time with the “Maximum Needed” resource of type X for
process Y. OS tracks the max & current needs of all processes.

 C
O

M
P 310 - Joseph V

ybihal 2006

16

Tracking Avoidance

Assume we have a computer system that uses 12 File Buffers
and that there is currently 3 processes running:

PROCESS MAX NEEDS CURRENT NEEDS at T0

P0 10 5
P1 4 2
P2 9 2

Note: Is in a safe state since <P1, P0, P2> terminates.

Assume: At T0, P0 is allocated 1 more resource. We are now in
 an unsafe state - P1 can finish but not P0 and P2.

 C
O

M
P 310 - Joseph V

ybihal 2006

17

Banker’s Algorithm

1
2
:
:
:
:
m

1 2 …………… n

m …………… n

Available Resources
in each type 1…m

Max Resources Needed
by each Process 1…n

Allocated Resources
by each Process 1…n

1 2 …………… n

m …………… n

1 2 …………… n

m …………… n
Needed Resources
by each Process 1…n

(Data structures)

NOTE: Need[i,j] = Max[i,j] - Allocated[i,j]

 C
O

M
P 310 - Joseph V

ybihal 2006

18

Banker’s Algorithm safe state determination algorithm:

1. Let WORK[1:m] = Available[1:m]
 Let FINISH[1:n] = false (for all i)

2. Locate i such that
 FINISH[i] = = false && Needed[i] <= WORK[i]
 if yes then goto step 3 else goto step 4

3. WORK[i] = WORK[i] + Allocated[i]
 FINISH[i] = true
 goto step 2

4. If (FINISH[i] = = true for all i) then return SafeState = true.

NOTE: O(m * n2)

 C
O

M
P 310 - Joseph V

ybihal 2006

19

Banker’s Resource-Request Algorithm:

1. Let Request[i] be the resources Pi wants to access (by type)

2. If (Request[i] <= Needs[i]) then goto step 3
 else error “Exceed max claim”

3. If (Request[i] <= Available[i]) then goto step 4
 else wait(Pi), not enough resources

4. Call Banker’s Safe State Algorithm, given:
 Available = Available - Request (for i)
 Allocation = Allocation + Request (for i)
 Needs = Needs - Request (for i)

If returns TRUE then give resources else wait(Pi), not safe.

 C
O

M
P 310 - Joseph V

ybihal 2006

20

Example
Process Allocation MAX Available Need

A B C A B C A B C A B C
P0 0 1 0 7 5 3 3 3 2 7 4 3
P1 2 0 0 3 2 2 1 2 2
P2 3 0 2 9 0 2 6 0 0
P3 2 1 1 2 2 2 0 1 1
P4 0 0 2 4 3 3 4 3 1

Is this system in a safe state?

How can we make it into an unsafe state?

 C
O

M
P 310 - Joseph V

ybihal 2006

21

Deadlock Detection Algorithm:

1. Let Work[1:m] = Available
 Let Finish[1:n] = false when Allocated[i] <> 0, else true.

2. Locate i such that
Finish[i] = = false && Request[i] <= Work[i]
if yes the goto step 3 else goto step 4

3. Work[i] = Work[i] + Allocated[i]
 Finish[i] = true
 goto step 2

4. If (Finish[i] = = false) then return deadlock for Pi

NOTE: O(m * n2)

 C
O

M
P 310 - Joseph V

ybihal 2006

22

What do we do with a deadlock?

If (Pi = = deadlock)
A) Terminate the process (easy), or
B) Resource preemption of all resources held by process.

(need data structure to remember resources,
will need to reallocate them once given CPU)

 C
O

M
P 310 - Joseph V

ybihal 2006

23

Part 3

Recovery from deadlocks

 C
O

M
P 310 - Joseph V

ybihal 2006

24

Three Solutions

• Prompt User
• Auto Process Termination
• Resource Preemption

 C
O

M
P 310 - Joseph V

ybihal 2006

25

Prompt User

• Resource reduction prompt
– e.g. prompt user to close a file
– does not specify which program or file

• Terminate a process prompt
– ask the user to close a process
– may or may not recommend a process

• User maintains control as to which program is
destroyed

 C
O

M
P 310 - Joseph V

ybihal 2006

26

Auto Process Termination
• Abort all deadlocked chain of processes

– expensive since a lot of work was done
• Abort one process and reevaluate

– O(m * n2) each reevaluation
– Other considerations:

• Priority
• Resource type
• How many resources needed to terminate?
• How long has process been running?

• No easy solution...

 C
O

M
P 310 - Joseph V

ybihal 2006

27

Resource Preemption
• Step 1: Selecting a victim

– similar cost considerations as per last slide

• Step 2: Rollback
– e.g. Once buffers are deleted the process cannot

continue from where it left off … where then?
– Total rollback i.e. delete and restart process

• Starvation is a problem…
– Increase process priority (if that is a consideration)

 C
O

M
P 310 - Joseph V

ybihal 2006

28

Part 4

At Home

 C
O

M
P 310 - Joseph V

ybihal 2006

29

Things to try out
1. Prepare for midterm exam

	Comp 310 Computer Systems and Organization
	Announcements
	Midterm Exam Format
	Basic OS Architecture (Course Table of Contents)
	Slide 5
	Part 1
	Three Methods
	Changing the necessary conditions
	Necessary Conditions
	Changing Mutual Exclusion
	Changing Hold and Wait
	Changing No Preemption
	Changing Circular Wait
	Part 2
	The Safe State Concept
	Tracking Avoidance
	Banker’s Algorithm
	PowerPoint Presentation
	Slide 19
	Example
	Slide 21
	Slide 22
	Part 3
	Three Solutions
	Prompt User
	Auto Process Termination
	Resource Preemption
	Part 4
	Things to try out

