Comp 310

Computer Systems and
Organization

Lecture #11
Process Management

(Classic Semaphores & Deadlocks)

Prof. Joseph Vybihal

Announcements

* Thursday, Oct 16 Midterm exam (in class)
— Half class review Tuesday, Oct 14

— Overview of exam next class
* C Tutonal
— Thursday Oct 9, 2:30-3:30 TR3060
— Tuesday Oct 14, 10:30-11:30 TR3060
— Arrays, pointers and malloc/free
* Midterm tutorials

— Extra office hours

Basic OS Architecture

(Course Table of Contents)

) _ Phase 4

«— Phase 1

Phase 3

Phase 2

Review

The Critical Section Problem

The Critical Section Problem

do
{ oo) Does not use shared
1nitial code; * eSOUCES
Entry section
critical section; < A shared resource

Exit section

remaining code;
+ while (1);

Entry & Exit code guard the critical section:
* Mutual Exclusion: Only 1 Pi can be in the critical section (regardless of quanta)
* Progress: Entry queues requests to use critical section

° Bounded Waiting: Indefinite postponement is not permitted

5

The 2 Process Solution

Note: since it 1s a shared var, one process will

do { overwrite the contents of the other, therefore
1nitial section: only one will be let through.
Shared vars < | Hagli] =#te; // indicates i wants to enter
turn = j; // does j want to enter?

while (flag[j] && turn ==1); // controls who enters

critical section;

flag[1] = false; // ’'m done, says Pi

remaining section;
+ while(1);

THIS IS PROCESS P1

Assumed Atomic Instr.

Basic Semaphore Definition

wait(S) { signal(S) {
while (S <0); // spinlock S++;
S-;

} I— Controls # who can get past }

S 1s a shared integer variable 1nitialized to O.

o Note: is a shared variable.
initial COde; / Limits who can get in.

wait(mutex);

do {

critical section;

signal(mutex);

remaining code;
+ while (1); .

Semaphore Use

* S=-1?
* S=27
* Spin lock vs. Sleep?

— Implementation?

Part 1

Classic Semaphore Problems

Practical Uses

* Memory Buffers
(Bounding Buffer problem)

* Shared Files / Variables
(Readers & Writers Problem)

* Limited Resources with Many Processes
(Dining Philosophers Problem)

10

How does this fit in?
(OS View)

Do {
cmd = gets();
if (cmd) fn();
else if (cmd) fn2();

+ while(!exit)

Sy e

/\
READY— C — WAIT (semaphore controlled/sleep)
ERMINATE

Semaphore
protected

How does this fit in?

(Programmer View)

FILE *ptr;

ptr = fopen(“file.txt”,”rt”);

» Semaphore to File & Buffer?
fscanf(ptr, “%d”, &d);

*Semaphore access to buffer (critical section)?

Note:

* fopen is the true / physical critical section, since at this point we must ask for use of
HDD and the creation of a buffer to read contents of file.

* fscanf will actually execute locally with buffer, since ptr points to buffer, until it is
empty, then the semaphore kicks in and more data overwrites buffer from file.

12

The Bounded-Buffer Problem

* Synchronization in one direction

— Like sending data to a printer

* Only one program should have access at
any time
— When P1 sending, no other Pi can send

— The resource must consume until P1 1s done

13

The Bounded-Buffer Problem

The Producer Process

do {

// produce an item in NEXTP

walt (empty) ; »Access to a cell of the array (is full?)
wait (mutex); *Mutual exclusion

// add NEXTP to buffer Access to buffer[n]
signal (mutex) ;
signal (full) ; —Is empty?

} while (1) ;

14

The Bounded-Buffer Problem

The Consumer Process

do {

walt (full); »Access to a cell of the array (is full?)
walt (mutex); »*Mutual exclusion

// remove an item from buffer to NEXTC

\

Access to buffer[n]
signal (mutex) ;

signal (empty) ;

> Is empty?

// consume the item in NEXTC

} while (1) ;

15

The Readers-Writers Problem

* Sharing a resource (e.g. file)
* Many readers can read at the same time
without problem

* But:
— Writers cannot write at the same time, and

— Readers cannot read while someone 1s writing

16

The Readers-Writers Problem

The Writer Process
// shared data structures
semaphore mutex=0, wrt=0;
int readcount=0;
wait (wrt) ; *Only 1 P1 can write at any time

// writing is performed

signal (wrt) ;

17

The Readers-Writers Problem

The Reader Process
// shared data structures

semaphore mutex=0, wrt=0; How many are reading?
int readcount=0;

walt (mutex) ;

readcount++; /v If one Pi 1S r-eading-thenln.o one
if (readcount == 1) wait (wrt); can write & if a Pj is writing then

we halt

signal(mutex);*\\\\\\\\\\\\\\\\$
Only one P can access at any time

// reading is performed

walt (mutex) ;

readcount—--;

if (readcount == 0) signal (wrt);
signal (mutex) ;

18

 The Dining-Philosophers Problem

* (Classic problem in sharing more than once
resource with multiple processes. Do not
want:

— Starvation, and
— Deadlock

* Thinking and eating

* Bowl of rice

* 5 single chop sticks

* when thinking, executing locally

* when hungry must access 2 chop sticks (wait or eat)
* when finished, drop chop sticks and think

19

N\

Problematic Solution?

Deadlock when all hungry!
semaphore chopstick[5] = {0, 0, 0, 0, O};

do {
wait (chopstick([i]);
wait (chopstick[(i+1) % 5)1;
// eat

signal (chopstick[1]);
signal (chopstick[(i+1) % 5)];

)/ think

} while (1) ;

How does this work?

20

Upgrades to solution...

* Run with n-1 philosophers

* Pickup a chopstick 1ff both available (1.e.
must be done 1n a critical section)

* Odd philosopher pick left, even pick right

21

monitor dp

{

enum {thinking, hungry, eating} statel[5];
condition self[5];

void pickup(int i) {
state[i] = hungry;
test (i) ;
if (stateli] != eating)
self[i] .wait () ;
}

void putdown(int i) {
state[i] = thinking;
test((i + 4) % 5);
test((i + 1) 4 B);

}
void test(int i) {
if ((state[(i + 4) % 5] !'= eating) &&
(statel[i] == hungry) &&
(state[(i + 1) % 5] !'= eating)) {
state[i] = eating;
self[i] .signal();
}
}
void init() {
for (int i = 0; 1-<:'5; $++)
state[i] = thinking;
}

Solution
with
Monitors

How does this work?

dp.pickup(i);
eat

dp.putdown (i) ;

22

Supportive Routines

To call a monitor:

walt (mutex) ;
call

if (next count > 0)
signal (next) ;
else
signal (mutex) ;

x.wait() 1s implemented as:

X _count++;
1f (next count >0)
signal (next) ;
else
signal (mutex) ;
walt (x_ sem);
Cc_count--;

Init:
next=-1
mutex=0
X_sem=-1
x_count=0
next count=0

x.signal() 1s implemented as:
if (x_count > 0) {
next count++;
signal (x_sem) ;
walt (next) ;
next count--;

23

24

Part 2
Introduction to Deadlocks

A Deadlock

EL D T D er s

) -

O S i EL D EL 6L

* notice nothing can

move, and

* movement depends

on the others

.

BB [3T 0

- (13 (IR {038 T3 @S i @

25

Deadlocks Based on Resources

Resource 1 is Process B is
allocated to Ressiirce requesting
process A. 1 resource 1.

Process Process
A B

Process A is
requesting
resource 2.

Resource 2 is
allocated to
process B.

Resource
2

Just like the traffic problem 26

Resource System Model

The common resource
driver can be spawned as
3 processes for each buffer

PCB—P1l—P 3 > P4 —null

wait

Semaphore
protected resource
Group 27

Resource Sharing

Want to share multiple resource with many processes without
causing;:

— Deadlock, nor

— Starvation

Resource utilization:

— Request

* If it cannot be granted immediately the process must wait until the
resource 1s available.

— Use

* The process has dedicated access to the resource until it is finished
— Release
* The process indicates that the resource can be used by another

Examples of:

— Request / Release device
— Open / Close file

— Malloc / free memory
28

Deadlock Basics

* A set of processes 1s in a deadlock state
when every process 1n the set 1s waiting for
an event that can be caused only by
another process 1n the set.

* In a deadlock, processes never finish
executing and system resources are tied up,
preventing other jobs from starting and
finishing.

29

Necessary Conditions

Mutual Exclusion
Hold and Wait

— A process must be holding at least one resource
and waiting to acquire another that is being held

No pre-emption

— The OS does not permit pre-emption of held
resources

Circular wait
— {P1, P2, P3} s.t. P> P2 > P3 > PI

30

good

ok ¢

P5

Resource Diagnosis
(VIA Resource-Allocation Graphs)

P1 R1
P1 is requesting a resource of type R1.
R2 P2
O - A resource of type R2 has been
O allocated to process P2.
P3 R3 P4
Process P3 is requesting resource R3,
O > which has been allocated to
process P4.
R4
Process P5 has been allocated
resource R5 that is being
requested by process P6
pe that has been allocated
resource R4 that is being
requested by process P5
R5 (the ““circular wait”).

31

Is There a Deadlock? 103

R, R

32

33

2 of 3

Is There a Deadlock?

3 0f3
34

Is There a Deadlock?

Reducing Resource-Allocation Graphs

e e If a process can|
finish then
"z remove 1ts arcs
If everything
o - reduces then
o : —> no deadlock
O

P9

Reducing by P7 ‘
P8

R6 R6

P8

35

Questions

To overcome the deadlock problems in an OS:

* When should the OS invoke resource allocation?

* How/where could it be implemented?

36

37

Part 3
At Home

Things to try out

1. Try to produce a resource allocation graph

that has a loop 1n 1t but does not cause a
deadlock.

2. Internet Resources:

1. http://www.cs.wcupa.edu/~rkline/OS/Deadlock.html

2. http://cgi.cse.unsw.edu.au/~cs3231/04s2/labs/threads/i
ndex.php?session=06s1

38

	Comp 310 Computer Systems and Organization
	Announcements
	Basic OS Architecture (Course Table of Contents)
	Review
	The Critical Section Problem
	The 2 Process Solution
	Basic Semaphore Definition
	Semaphore Use
	Part 1
	Practical Uses
	How does this fit in? (OS View)
	PowerPoint Presentation
	The Bounded-Buffer Problem
	Slide 14
	Slide 15
	The Readers-Writers Problem
	Slide 17
	Slide 18
	The Dining-Philosophers Problem
	Problematic Solution?
	Upgrades to solution…
	Proper Solution with Monitors
	Supportive Routines
	Part 2
	A Deadlock
	Deadlocks Based on Resources
	Resource System Model
	Resource Sharing
	Deadlock Basics
	Necessary Conditions
	Resource Diagnosis (VIA Resource-Allocation Graphs)
	Is There a Deadlock?
	Slide 33
	Slide 34
	Reducing Resource-Allocation Graphs
	Questions
	Part 3
	Things to try out

