
 C
O

M
P 310 - Joseph V

ybihal 2006

1

Comp 310
Computer Systems and

Organization

Lecture #11
Process Management

(Classic Semaphores & Deadlocks)

Prof. Joseph Vybihal

 C
O

M
P 310 - Joseph V

ybihal 2006

2

Announcements

• Thursday, Oct 16 Midterm exam (in class)
– Half class review Tuesday, Oct 14
– Overview of exam next class

• C Tutorial
– Thursday Oct 9, 2:30-3:30 TR3060
– Tuesday Oct 14, 10:30-11:30 TR3060
– Arrays, pointers and malloc/free

• Midterm tutorials
– Extra office hours

 C
O

M
P 310 - Joseph V

ybihal 2006

3

Basic OS Architecture
(Course Table of Contents)

User Interface

Memory Manager

Process Manager

Network Manager

Hardware Manager

Disk / Storage Manager

Phase 1

Phase 2

Phase 3

Security Phase 4

 C
O

M
P 310 - Joseph V

ybihal 2006

4

Review

The Critical Section Problem

 C
O

M
P 310 - Joseph V

ybihal 2006

5

The Critical Section Problem

 do {
initial code;

critical section;

remaining code;
 } while (1);

Entry section

Exit section

A shared resource

Does not use shared
resources

Entry & Exit code guard the critical section:
• Mutual Exclusion: Only 1 Pi can be in the critical section (regardless of quanta)
• Progress: Entry queues requests to use critical section
• Bounded Waiting: Indefinite postponement is not permitted

 C
O

M
P 310 - Joseph V

ybihal 2006

6

The 2 Process Solution
 do {

initial section;

critical section;

remaining section;
 } while(1);

 flag[i] = true; // indicates i wants to enter
 turn = j; // does j want to enter?
 while (flag[j] && turn == j); // controls who enters

 flag[i] = false; // I’m done, says Pi

THIS IS PROCESS Pi

Shared vars

Note: since it is a shared var, one process will
overwrite the contents of the other, therefore
only one will be let through.

 C
O

M
P 310 - Joseph V

ybihal 2006

7

Basic Semaphore Definition
wait(S) { signal(S) {

while (S < 0); // spinlock S++;
S--; }

}

S is a shared integer variable initialized to 0.

Controls # who can get past

 do {
initial code;

critical section;

remaining code;
 } while (1);

wait(mutex);

signal(mutex);

Note: is a shared variable.
Limits who can get in.

Assumed Atomic Instr.

 C
O

M
P 310 - Joseph V

ybihal 2006

8

Semaphore Use

• S = -1?
• S = 2?
• Spin lock vs. Sleep?

– Implementation?

 C
O

M
P 310 - Joseph V

ybihal 2006

9

Part 1

Classic Semaphore Problems

 C
O

M
P 310 - Joseph V

ybihal 2006

10

Practical Uses
• Memory Buffers

(Bounding Buffer problem)

• Shared Files / Variables
(Readers & Writers Problem)

• Limited Resources with Many Processes
(Dining Philosophers Problem)

 C
O

M
P 310 - Joseph V

ybihal 2006

11

How does this fit in?
(OS View)

User Interface

Memory Manager

Process Manager

Network Manager

Hardware Manager

Disk / Storage Manager

Security

disk tape printer

driver driver driver Semaphore
protected

PCB NULL

READY CPU WAIT (semaphore controlled/sleep)
TERMINATE

Do {
 cmd = gets();
 if (cmd) fn();
 else if (cmd) fn2();
} while(!exit)

Shell
memory

 C
O

M
P 310 - Joseph V

ybihal 2006

12

How does this fit in?
(Programmer View)

 FILE *ptr;

 ptr = fopen(“file.txt”,”rt”);

 fscanf(ptr, “%d”, &d);

Semaphore to File & Buffer?

Semaphore access to buffer (critical section)?

Note:
• fopen is the true / physical critical section, since at this point we must ask for use of
 HDD and the creation of a buffer to read contents of file.
• fscanf will actually execute locally with buffer, since ptr points to buffer, until it is
 empty, then the semaphore kicks in and more data overwrites buffer from file.

 C
O

M
P 310 - Joseph V

ybihal 2006

13

The Bounded-Buffer Problem
• Synchronization in one direction

– Like sending data to a printer
• Only one program should have access at

any time
– When P1 sending, no other Pi can send
– The resource must consume until P1 is done

 C
O

M
P 310 - Joseph V

ybihal 2006

14

The Bounded-Buffer Problem

 do {
:
// produce an item in NEXTP
:

wait(empty);
wait (mutex);

:
// add NEXTP to buffer
:

signal(mutex);
signal(full);

 } while(1);

Init:
• mutex = 0
• empty = n, full = -1

Access to buffer[n]

Access to a cell of the array (is full?)

Is empty?

Mutual exclusion

The Producer Process

 C
O

M
P 310 - Joseph V

ybihal 2006

15

 do {
wait(full);
wait (mutex);

:
// remove an item from buffer to NEXTC
:

signal(mutex);
signal(empty);

:
// consume the item in NEXTC
:

 } while(1);

Init:
•From previous

Access to buffer[n]

Access to a cell of the array (is full?)

Is empty?

The Consumer Process

Mutual exclusion

The Bounded-Buffer Problem

 C
O

M
P 310 - Joseph V

ybihal 2006

16

The Readers-Writers Problem
• Sharing a resource (e.g. file)
• Many readers can read at the same time

without problem
• But:

– Writers cannot write at the same time, and
– Readers cannot read while someone is writing

 C
O

M
P 310 - Joseph V

ybihal 2006

17

The Readers-Writers Problem
The Writer Process

 // shared data structures

 semaphore mutex=0, wrt=0;
 int readcount=0;
 :
 :
 wait(wrt);
 :
 // writing is performed
 :
 signal(wrt);
 :

Only 1 Pi can write at any time

 C
O

M
P 310 - Joseph V

ybihal 2006

18

The Readers-Writers Problem
The Reader Process

 // shared data structures

 semaphore mutex=0, wrt=0;
 int readcount=0;
 :
 wait(mutex);
 readcount++;
 if (readcount == 1) wait(wrt);
 signal(mutex);
 :
 // reading is performed
 :
 wait(mutex);
 readcount--;
 if (readcount == 0) signal(wrt);
 signal(mutex);

How many are reading?

If one Pi is reading then no one
can write & if a Pj is writing then
we halt

Only one P can access at any time

 C
O

M
P 310 - Joseph V

ybihal 2006

19

The Dining-Philosophers Problem
• Classic problem in sharing more than once

resource with multiple processes. Do not
want:
– Starvation, and
– Deadlock

• Thinking and eating
• Bowl of rice
• 5 single chop sticks
• when thinking, executing locally
• when hungry must access 2 chop sticks (wait or eat)
• when finished, drop chop sticks and think

 C
O

M
P 310 - Joseph V

ybihal 2006

20

Problematic Solution?
Deadlock when all hungry!

 semaphore chopstick[5] = {0, 0, 0, 0, 0};
 :
 do {

:
wait(chopstick[i]);
wait(chopstick[(i+1) % 5)];
:
// eat
:
signal(chopstick[i]);
signal(chopstick[(i+1) % 5)];
:
// think
:

 } while(1);

How does this work?

 C
O

M
P 310 - Joseph V

ybihal 2006

21

Upgrades to solution…

• Run with n-1 philosophers
• Pickup a chopstick iff both available (i.e.

must be done in a critical section)
• Odd philosopher pick left, even pick right

 C
O

M
P 310 - Joseph V

ybihal 2006

22

 Solution
with

Monitors

How does this work?

 C
O

M
P 310 - Joseph V

ybihal 2006

23

Supportive Routines
To call a monitor:
 wait(mutex);
 :
 call
 :
 if (next_count > 0)

signal(next);
 else

signal(mutex);

x.wait() is implemented as:
 x_count++;
 if (next_count >0)

signal(next);
 else

signal(mutex);
 wait(x_sem);
 c_count--;

x.signal() is implemented as:
 if (x_count > 0) {

next_count++;
signal(x_sem);
wait(next);
next_count--;

 }

Init:
next=-1
mutex=0
x_sem=-1
x_count=0
next_count=0

 C
O

M
P 310 - Joseph V

ybihal 2006

24

Part 2

Introduction to Deadlocks

 C
O

M
P 310 - Joseph V

ybihal 2006

25

A Deadlock

• notice nothing can
 move, and
• movement depends
 on the others

 C
O

M
P 310 - Joseph V

ybihal 2006

26

Deadlocks Based on Resources

Just like the traffic problem

 C
O

M
P 310 - Joseph V

ybihal 2006

27

driver

Resource System Model

User Interface

Memory Manager

Process Manager

Network Manager

Hardware Manager

Disk / Storage Manager

Security

printer

Semaphore
protected resource
Groupprinterprinter

buffer buffer buffer

PCB P1 P2 P3 P4 null

wait

The common resource
driver can be spawned as
3 processes for each buffer

 C
O

M
P 310 - Joseph V

ybihal 2006

28

Resource Sharing
• Want to share multiple resource with many processes without

causing:
– Deadlock, nor
– Starvation

• Resource utilization:
– Request

• If it cannot be granted immediately the process must wait until the
resource is available.

– Use
• The process has dedicated access to the resource until it is finished

– Release
• The process indicates that the resource can be used by another

• Examples of:
– Request / Release device
– Open / Close file
– Malloc / free memory

 C
O

M
P 310 - Joseph V

ybihal 2006

29

Deadlock Basics
• A set of processes is in a deadlock state

when every process in the set is waiting for
an event that can be caused only by
another process in the set.

• In a deadlock, processes never finish
executing and system resources are tied up,
preventing other jobs from starting and
finishing.

 C
O

M
P 310 - Joseph V

ybihal 2006

30

Necessary Conditions
• Mutual Exclusion
• Hold and Wait

– A process must be holding at least one resource
and waiting to acquire another that is being held

• No pre-emption
– The OS does not permit pre-emption of held

resources
• Circular wait

– {P1, P2, P3} s.t. P1 P2  P3  P1

 C
O

M
P 310 - Joseph V

ybihal 2006

31

Resource Diagnosis
(VIA Resource-Allocation Graphs)

good

ok

 C
O

M
P 310 - Joseph V

ybihal 2006

32

Is There a Deadlock? 1 of 3

 C
O

M
P 310 - Joseph V

ybihal 2006

33

Is There a Deadlock? 2 of 3

 C
O

M
P 310 - Joseph V

ybihal 2006

34

Is There a Deadlock? 3 of 3

 C
O

M
P 310 - Joseph V

ybihal 2006

35

Reducing Resource-Allocation Graphs
If a process can
finish then
remove its arcs

If everything
reduces then
no deadlock

 C
O

M
P 310 - Joseph V

ybihal 2006

36

Questions

To overcome the deadlock problems in an OS:

• When should the OS invoke resource allocation?

• How/where could it be implemented?

 C
O

M
P 310 - Joseph V

ybihal 2006

37

Part 3

At Home

 C
O

M
P 310 - Joseph V

ybihal 2006

38

Things to try out
1. Try to produce a resource allocation graph

that has a loop in it but does not cause a
deadlock.

2. Internet Resources:
1. http://www.cs.wcupa.edu/~rkline/OS/Deadlock.html
2. http://cgi.cse.unsw.edu.au/~cs3231/04s2/labs/threads/i

ndex.php?session=06s1

	Comp 310 Computer Systems and Organization
	Announcements
	Basic OS Architecture (Course Table of Contents)
	Review
	The Critical Section Problem
	The 2 Process Solution
	Basic Semaphore Definition
	Semaphore Use
	Part 1
	Practical Uses
	How does this fit in? (OS View)
	PowerPoint Presentation
	The Bounded-Buffer Problem
	Slide 14
	Slide 15
	The Readers-Writers Problem
	Slide 17
	Slide 18
	The Dining-Philosophers Problem
	Problematic Solution?
	Upgrades to solution…
	Proper Solution with Monitors
	Supportive Routines
	Part 2
	A Deadlock
	Deadlocks Based on Resources
	Resource System Model
	Resource Sharing
	Deadlock Basics
	Necessary Conditions
	Resource Diagnosis (VIA Resource-Allocation Graphs)
	Is There a Deadlock?
	Slide 33
	Slide 34
	Reducing Resource-Allocation Graphs
	Questions
	Part 3
	Things to try out

