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Announcements

* Oct 16 Midterm exam (1n class)

— In class review Oct 14 (74 class review)
— Tutorials: TBA
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Part 1

Types of CPU Scheduling




Sample Architectures

(a) Single-user Single-Process Execution

»ld

O/S Interrupt (go to OS)

Terminated

I/O Interrupt (go to OS)

(b) Single-user Multi-process Execution

(FIFO, PRIORITY
SORTED)

v

Terminated

I/O or O/S Interrupt (go to OS)




(c) Multi-tasking Execution & Multi-user (Ready queue = multilevel)

Quantum interrupt

» Terminated

(FIFO, PRIQRITY

I/O & O/S Interrupt (go to OS)
SORTED)

(d) Multi-user Multi-tasking Multi-Processor Execution (Multilevel ready queue)

Quantum Interrupt

» Terminated

I/O Interrupt

v

Terminated
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40 40 30 515
45 40 35 56
50 40 40 58
55 40 45 58
59 20 49 59

— New priorities —




Solaris 2 Scheduling

global scheduling
priority order
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Windows XP Scheduling

PRIORITY CLASS

Standard priority sorted FIFO/RR queue




= Linux (POSIX Standard)

Quantum interrupt + others (but not Kernel proc.)

Terminated

(32 Level Priority

I/O Interrupt
Queue)

Real-time = Fixed priority queue (FIFO & RR)
Multi-tasking = Highest Credit System

Credit = ( Credit / 2) + Priority
Quantum Interrupt = -1 to Credit per Q until 0 then get next

process from Queue. When all Credits 0
then recalculate based on Credit formul4.
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Little’s Formula

* N=AxW
* Where:

— N 1s the length of the queue
— M 1s the average arrival rate of a new process

* 3 processes per second

— W 1s average queue waiting time

* Is the system 1n a steady state?

e.g. if W= 5 sec and A = 3/sec
Then by the time P1 exists the queue 15 new
processes have entered the queue
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Part 2

Process Synchronization

(Accessing Resources)
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The Issue

Who gets to use it?

Problem: If P1 loses quanta while using resource, then what?
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What resources?

* Algorithmic

— Variables and data structures used to manage
by OS

* Physical

— Files, disk drives, printers, etc.
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Example

Producer

Consumer
Whﬂe(l) { While (1) {
while (ctr == BUF_SIZE); while (ctr = = 0);
buflin] = nextValue; nextValue = bufJout];
in = (1n + 1) % BUF_SIZE, out = (Out + 1) %
ctr+; BUF SIZE;
b ctr--;
§
Concurrent modification of shared variable ctr!
i
NOTE: The resource
ctr++ in assembler: ctr-- in assembler:
move reg, ctr move reg, ctr
incr reg decr reg

move ctr, reg move ctr, reg
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N
/| In Concurrent mode this is possible:

CTR starts at 5 and producer creates 1 while consumer uses 1, should stay as 5
TO: producer - move reg, ctr {reg=5}

T1: producer - incr reg {reg=06}
T2: Task switch

T3: consumer- move reg, ctr {reg=5}
T4: consumer- decr reg {reg=4}
T5: task switch

T6: producer - move ctr, reg {ctr =6}
T7: Task switch

T8: consumer- move ctr, reg {ctr =4}

How can we control this!

17




The Critical Section Problem

do
.{ . ) Does not use shared
initial code; -
resources
Entry section
critical section; < A shared resource

Exit section

remaining code;
+ while (1);

Entry & Exit code guard the critical section:
* Mutual Exclusion: Only 1 Pi can be in the critical section (regardless of quanta)
* Progress: Entry queues requests to use critical section

° Bounded Waiting: Indefinite postponement is not permitted
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The 2 Process Solution

do {

1nitial section;

flag[i] = true; // indicates 1 wants to enter
turn = j; // does j want to enter?
while (flag[j] && turn ==1); // controls who enters

Shared vars {

critical section;

flag[1] = false; // ’'m done, says Pi

remaining section;
+ while(1);

THIS IS PROCESS P1
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shared {

Multi-process Solution

do {

1nitial section;

choosing|[i] = true;

choosing[i] = false;

;

< 1 wants a waiting number

number[i] = max(num[0], num[1],..., num[n-1])+1; < bigger num

for(j=0; j <n; j++) { & FIFO ACCESS
while (choosing|[j]); ¢ Wait if someone getting a number
while (num[j]!=0 && num|[j]<= num[i] && j<i);

critical section;

> Don’t want to go in

number[i] = 0;

—

remainder section;

+ while(1);

THE BANKER’S ALGORITHM FOR P1 20




Hardware SOIU.tiOIlI Atomic Instructions

ONLY one program can execute this instruction at any “clock
tick”. It executes in one CPU operation.

boolean TestAndSet(boolean *target)

{
boolean rv = *target;
*target = true;
return rv; void Swap(boolean *a, boolean *b)
§ {
boolean temp = *a;
*b = temp;

21




Mutual-Exclusion Examples

do { do {
initial section; initial section;
while (TestAndSet(lock)); key = true;
critical section; while (key == true)
Swap(lock, key);
lock = false;
remainder section; critical section;
} while(1);
lock = false;
Common Structures: remainder section;
* lock + while(1);

Common Structures:
* waiting[n]
* lock
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Bounded-waiting with TestAndSet

do {

waitingl[i] = true; — [ wants to enfeC
key = true; €«—
while (waitingl[i] && key)

=T [0
key = TestAndSet (lock) ; > r:z,[ . +i,§,
. s ia . = 1 : A lock :ﬁ‘vﬂ?
D'm inl —>{vaitingli] = false F€ lock = false
L L shaceat
critical section ATOMIC

Qet adyaceaf —| j = (i+1) % n;

. v
ccan all adiccen?—>|while ((j != 1) && 'waiting[j1) é—g;gfejfﬁf

J mAg+1) % n; wants Jo enter
1f Cyiaeed) CFiFo).

lock = false; & ho onewank i7
else

waiting[j] = false; €—) <@/ get-i 7.

remainder section

} while (1);
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Part 3
Semaphores




Basic Definition

wait(S) { signal(S) {
while (S <0); // spinlock S++;
S-;

} I— Controls # who can get past }

S 1s a shared integer variable initialized to 1.

do {
1nitial code;

wait(mutex);

critical section;

signal(mutex);

remaining code;
+ while (1); 55




Problems to avoid

* Deadlock

— P1 has resource Q and wants resource R

— Pj has resource R and wants resource Q

* Indefinite Postponement (starvation)

— Deadlock forever

26




Practical Uses

* Memory Buffers (Bounding Buffer problem)

* Shared Files / Vars (Readers & Writers Problem)

* Limited Resources Many Processes
(Dining Philosophers Problem

(Next class)
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Part 4
Monitors




Semaphore Queue Implementation

typedef struct {
int val; // val=1 to start

struct PROCESS *q;
} semaphore;

void wait(semaphore S) { void signal(semaphore S) {

S.val--; S.val++;

if (S.val <0) // must wait if (S.val <= 0)

{ { // give access
tail(process,q); p = head(q);
block(); // sleep wakeup(p);

; ;

;
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Abstract View
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One process it reduces to a standard semaphore.




object?

Question

* How could we implement a monitor using
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Part 5
At Home




Things to try out

* Try to implement a two process
synchronization problem using C.

2. Web Resources (Monitors & Threads):

1. http://msdn2.microsoft.com/en-us/library/aa645740(vs.71).aspx
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