Comp 310

Computer Systems and
Organization

Lecture #10
Process Management
(CPU Scheduling & Synchronization)

Prof. Joseph Vybihal

Announcements

* Oct 16 Midterm exam (1n class)

— In class review Oct 14 (74 class review)
— Tutorials: TBA

Basic OS Architecture

(Course Table of Contents)

) _ Phase 4

<« Phase 1

Phase 3

Phase 2

Part 1

Types of CPU Scheduling

Sample Architectures

(a) Single-user Single-Process Execution

»ld

O/S Interrupt (go to OS)

Terminated

I/O Interrupt (go to OS)

(b) Single-user Multi-process Execution

(FIFO, PRIORITY
SORTED)

v

Terminated

I/O or O/S Interrupt (go to OS)

(c) Multi-tasking Execution & Multi-user (Ready queue = multilevel)

Quantum interrupt

» Terminated

(FIFO, PRIQRITY

I/O & O/S Interrupt (go to OS)
SORTED)

(d) Multi-user Multi-tasking Multi-Processor Execution (Multilevel ready queue)

Quantum Interrupt

» Terminated

I/O Interrupt

v

Terminated

High
priority

35 80 25 54
40 40 30 515
45 40 35 56
50 40 40 58
55 40 45 58
59 20 49 59

— New priorities —

Solaris 2 Scheduling

global scheduling
priority order

4 169 £ = - h

- first
 interruptthreads | |

highest

160
159

100 |
99

60
59

v last

o

lowest

Windows XP Scheduling

PRIORITY CLASS

Standard priority sorted FIFO/RR queue

= Linux (POSIX Standard)

Quantum interrupt + others (but not Kernel proc.)

Terminated

(32 Level Priority

I/O Interrupt
Queue)

Real-time = Fixed priority queue (FIFO & RR)
Multi-tasking = Highest Credit System

Credit = (Credit / 2) + Priority
Quantum Interrupt = -1 to Credit per Q until 0 then get next

process from Queue. When all Credits 0
then recalculate based on Credit formul4.

’ D
ew
5>’
event & The interrupl response\};oq::ent
< response interval >
process made
interrupt available
jelioeeong., Conflict Phase:
- dispatch latency —>) Pre-empt running
process
real-time * Release resources
pS— held by lower
execution e .
«—————»| priority Pi
conflicts dispatch ——
[rmpjdﬁ 5 S{rgf" Cg';e”r
rcemptionN - m
2, Inséwedin wf»
2 Keleoge of
(EsouiceS -

Hard real-time: —— b Reempdion &2 100msec

Switch <= fixed T D (04 A P plion Az @ msec
Soft real-time:

11
| Switch to higher priority

Little’s Formula

* N=AxW
* Where:

— N 1s the length of the queue
— M 1s the average arrival rate of a new process

* 3 processes per second

— W 1s average queue waiting time

* Is the system 1n a steady state?

e.g. if W= 5 sec and A = 3/sec
Then by the time P1 exists the queue 15 new
processes have entered the queue

12

Part 2

Process Synchronization

(Accessing Resources)

13

The Issue

Who gets to use it?

Problem: If P1 loses quanta while using resource, then what?

14

What resources?

* Algorithmic

— Variables and data structures used to manage
by OS

* Physical

— Files, disk drives, printers, etc.

15

Example

Producer

Consumer
Whﬂe(l) { While (1) {
while (ctr == BUF_SIZE); while (ctr = = 0);
buflin] = nextValue; nextValue = bufJout];
in = (1n + 1) % BUF_SIZE, out = (Out + 1) %
ctr+; BUF SIZE;
b ctr--;
§
Concurrent modification of shared variable ctr!
i
NOTE: The resource
ctr++ in assembler: ctr-- in assembler:
move reg, ctr move reg, ctr
incr reg decr reg

move ctr, reg move ctr, reg

16

N
/| In Concurrent mode this is possible:

CTR starts at 5 and producer creates 1 while consumer uses 1, should stay as 5
TO: producer - move reg, ctr {reg=5}

T1: producer - incr reg {reg=06}
T2: Task switch

T3: consumer- move reg, ctr {reg=5}
T4: consumer- decr reg {reg=4}
T5: task switch

T6: producer - move ctr, reg {ctr =6}
T7: Task switch

T8: consumer- move ctr, reg {ctr =4}

How can we control this!

17

The Critical Section Problem

do
.{ .) Does not use shared
initial code; -
resources
Entry section
critical section; < A shared resource

Exit section

remaining code;
+ while (1);

Entry & Exit code guard the critical section:
* Mutual Exclusion: Only 1 Pi can be in the critical section (regardless of quanta)
* Progress: Entry queues requests to use critical section

° Bounded Waiting: Indefinite postponement is not permitted

18

The 2 Process Solution

do {

1nitial section;

flag[i] = true; // indicates 1 wants to enter
turn = j; // does j want to enter?
while (flag[j] && turn ==1); // controls who enters

Shared vars {

critical section;

flag[1] = false; // ’'m done, says Pi

remaining section;
+ while(1);

THIS IS PROCESS P1

19

shared {

Multi-process Solution

do {

1nitial section;

choosing|[i] = true;

choosing[i] = false;

;

< 1 wants a waiting number

number[i] = max(num[0], num[1],..., num[n-1])+1; < bigger num

for(j=0; j <n; j++) { & FIFO ACCESS
while (choosing|[j]); ¢ Wait if someone getting a number
while (num[j]!=0 && num|[j]<= num[i] && j<i);

critical section;

> Don’t want to go in

number[i] = 0;

—

remainder section;

+ while(1);

THE BANKER’S ALGORITHM FOR P1 20

Hardware SOIU.tiOIlI Atomic Instructions

ONLY one program can execute this instruction at any “clock
tick”. It executes in one CPU operation.

boolean TestAndSet(boolean *target)

{
boolean rv = *target;
*target = true;
return rv; void Swap(boolean *a, boolean *b)
§ {
boolean temp = *a;
*b = temp;

21

Mutual-Exclusion Examples

do { do {
initial section; initial section;
while (TestAndSet(lock)); key = true;
critical section; while (key == true)
Swap(lock, key);
lock = false;
remainder section; critical section;
} while(1);
lock = false;
Common Structures: remainder section;
* lock + while(1);

Common Structures:
* waiting[n]
* lock

22

Bounded-waiting with TestAndSet

do {

waitingl[i] = true; — [wants to enfeC
key = true; €«—
while (waitingl[i] && key)

=T [0
key = TestAndSet (lock) ; > r:z,[. +i,§,
. s ia . = 1 : A lock :ﬁ‘vﬂ?
D'm inl —>{vaitingli] = false F€ lock = false
L L shaceat
critical section ATOMIC

Qet adyaceaf —| j = (i+1) % n;

. v
ccan all adiccen?—>|while ((j != 1) && 'waiting[j1) é—g;gfejfﬁf

J mAg+1) % n; wants Jo enter
1f Cyiaeed) CFiFo).

lock = false; & ho onewank i7
else

waiting[j] = false; €—) <@/ get-i 7.

remainder section

} while (1);

23

24

Part 3
Semaphores

Basic Definition

wait(S) { signal(S) {
while (S <0); // spinlock S++;
S-;

} I— Controls # who can get past }

S 1s a shared integer variable initialized to 1.

do {
1nitial code;

wait(mutex);

critical section;

signal(mutex);

remaining code;
+ while (1); 55

Problems to avoid

* Deadlock

— P1 has resource Q and wants resource R

— Pj has resource R and wants resource Q

* Indefinite Postponement (starvation)

— Deadlock forever

26

Practical Uses

* Memory Buffers (Bounding Buffer problem)

* Shared Files / Vars (Readers & Writers Problem)

* Limited Resources Many Processes
(Dining Philosophers Problem

(Next class)

27

28

Part 4
Monitors

Semaphore Queue Implementation

typedef struct {
int val; // val=1 to start

struct PROCESS *q;
} semaphore;

void wait(semaphore S) { void signal(semaphore S) {

S.val--; S.val++;

if (S.val <0) // must wait if (S.val <= 0)

{ { // give access
tail(process,q); p = head(q);
block(); // sleep wakeup(p);

; ;

;

29

Abstract View

ASS

Acus-

entry queue

S
?(ch$
queues associated with
X, y conditions Cond ihon X,)’/'
ﬁ X.wa,t();

p'Q”/A-TE — s/eep, -
VARS . X.&@na/(),-

- Wc-#feu,f: otheyr

— Pdnish s} Han & -

operations

1 30
One process it reduces to a standard semaphore.

object?

Question

* How could we implement a monitor using

31

32

Part 5
At Home

Things to try out

* Try to implement a two process
synchronization problem using C.

2. Web Resources (Monitors & Threads):

1. http://msdn2.microsoft.com/en-us/library/aa645740(vs.71).aspx

33

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

