
 C
O

M
P 310 - Joseph V

ybihal 2006

1

Comp 310
Computer Systems and

Organization

Lecture #7
Threads

(Part 1 – Basic Architecture)

Prof. Joseph Vybihal

 C
O

M
P 310 - Joseph V

ybihal 2006

2

Announcements

• C Tutorials

T & TH 10:30-3:30 Web TA
Trottier 3rd floor By Appointment
Email: Web CT Email: Web CT

C Tutorial #2: TBA Unix & C Tutorial #1

 C
O

M
P 310 - Joseph V

ybihal 2006

3

Basic OS Architecture
(Course Table of Contents)

User Interface

Memory Manager

Process Manager

Network Manager

Hardware Manager

Disk / Storage Manager

Phase 1

Phase 2

Phase 3

Security Phase 4

 C
O

M
P 310 - Joseph V

ybihal 2006

4

Part 1

Threads vs. Process

Purpose: in-depth view of OS run-time environment

 C
O

M
P 310 - Joseph V

ybihal 2006

5

Question

• What is a thread and how is it different
from a process?

Task switching view...

 C
O

M
P 310 - Joseph V

ybihal 2006

6

Processes

 C
O

M
P 310 - Joseph V

ybihal 2006

7

An Example

EX: Operating System Print Spooler

Printer PC OS Spooler Process

Multi-Threading

Spooler
Threaded

Process

Process

OS Spooling
Space

Spooler
Process
(DLL)

User space 1

User space i

Multi-Tasking

Process

Spooler

Process

Spooler

OS Spooling
Space

User space 1

User Space i

 C
O

M
P 310 - Joseph V

ybihal 2006

8

Question

• How would the print spooler code be
different in multi-tasking vs. multi-
threading?

 C
O

M
P 310 - Joseph V

ybihal 2006

9

Part 2

About Threads

 C
O

M
P 310 - Joseph V

ybihal 2006

10

What are they?

A Process
(no threads)

code

1 PCB

stack

Files +
resources

registers

data

Ptr to
code

The Process

A Process
(with 1 or more threads)

code data Files +
resources

PCB1 PCB2 PCB3

registers registers registers

stack stack stack

Ptr to
code

Ptr to
code

Ptr to
code

The Process

Each process has one PCB

About Processes

 C
O

M
P 310 - Joseph V

ybihal 2006

11

By Definition
• A lightweight process (LWP)
• Contains:

– Thread ID
– Program counter
– Register set
– A run-time stack

• Shares:
– Code
– Data
– OS Resources (files, interrupts, etc.)

About threads

 C
O

M
P 310 - Joseph V

ybihal 2006

12

Threads as a data structure

PCB Head Pointer

PCB PCB PCB Null

Thread

Thread

null

Common information

Information specific to the thread

Files +
resources

stackregisters Ptr to
code

RAM:
-Code
-Static data

 C
O

M
P 310 - Joseph V

ybihal 2006

13

Example Usage
• Browser threads:

– Display web page
– Retrieve web page from network

• Word Processor threads:
– Display graphical text and images
– Read keyboard
– Background spell check

 C
O

M
P 310 - Joseph V

ybihal 2006

14

Benefits
• Responsiveness

– Resource request blocked but can still execute
– Other users do not need to wait for you

• Resource Sharing
– DLL and Printer Queues, …

• Economy
– Process creation is more expensive than thread

creation
• Multiprocessor Architectures

 C
O

M
P 310 - Joseph V

ybihal 2006

15

Question
• What would the complete memory look like

with processes and OS PCB/Thread
management?

In other words, how could we diagram it?
How would the OS execute everything?

 C
O

M
P 310 - Joseph V

ybihal 2006

16

Part 3

Threading Models

 C
O

M
P 310 - Joseph V

ybihal 2006

17

Two Thread Types
• User threads

– Supported by the compiler, library, or your programming
– Fast and easy to build
– OS is not aware of them (quanta distributed across all)
– Problem: if 1 thread blocked then entire process blocked.
– Examples: Solaris 2

• Kernel threads
– Supported directly by OS
– Slower to build and uses a lot of OS resources
– OS is aware of each thread, so no blocking problem
– Benefit: Can take advantage of multi-CPU systems
– Examples: Windows 2000, Solaris 2, Tru64 Unix, …

 C
O

M
P 310 - Joseph V

ybihal 2006

18

Threading Models
• The Many-to-One Model

Kernel
Thread

Your code does task switching

User threadsIf one blocks,
then kernel thread
sleeps & all become
blocked

OS aware of only this thread

Kernel Queue (task switching)

 C
O

M
P 310 - Joseph V

ybihal 2006

19

Threading Models
• The One-to-One Model

Kernel
Thread

Kernel
Thread

Kernel
Thread

No queue

(Multi-processor friendly)

(m threads * k bytes) + (n T-kernels * c bytes) = B bytes, s.t. B is large, therefore:
 n < LIMIT

 C
O

M
P 310 - Joseph V

ybihal 2006

20

Question

• How might the OS be programmed for
multiple processors in one-to-one?

How could we diagram it?
How would the OS manage it?

 C
O

M
P 310 - Joseph V

ybihal 2006

21

Threading Models
• The Many-to-Many Model

Kernel
Thread

Kernel
Thread

Kernel
Thread

Kernel Queue (task pool switching)

 n user threads
 m kernel threads
 n >= m
 m < limit
 n > 0, no limit

Multi-processor friendly

 C
O

M
P 310 - Joseph V

ybihal 2006

22

OS Resource Limits

Thread Pool

Request • At OS boot a predefined
 number of threads are created.

• When a request is issued, it
 is assigned a sleeping thread
 from the pool, or gets queued.

• Benefits:
• Time (no create/kill)
• Limits (manage CPU)

 C
O

M
P 310 - Joseph V

ybihal 2006

23

Part 4

At Home

 C
O

M
P 310 - Joseph V

ybihal 2006

24

Things to try out
1. Write C programs to:

• Fork
• Exec
• System
Try to overload your computer with multiple child

processes and threads.

(do this gradually…the system staff don’t allow it
here...)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

