
 C
O

M
P 310 - Joseph V

ybihal 2006

1

Comp 310
Computer Systems and

Organization

Lecture #6
The Process and Communication
(Programming with Processes)

Prof. Joseph Vybihal

 C
O

M
P 310 - Joseph V

ybihal 2006

2

Announcements

• C Programming Tutorial...

 C
O

M
P 310 - Joseph V

ybihal 2006

3

Basic OS Architecture
(Course Table of Contents)

User Interface

Memory Manager

Process Manager

Network Manager

Hardware Manager

Disk / Storage Manager

Phase 1

Phase 2

Phase 3

Security Phase 4

 C
O

M
P 310 - Joseph V

ybihal 2006

4

Part 1

Process Scheduling

 C
O

M
P 310 - Joseph V

ybihal 2006

5

Implementing Processes
• OS is responsible for:

– Dynamically selecting the next process to run
– Rescheduling performed by dispatcher

• Dispatcher Algorithm:

Loop forever {
run the process for a while (quanta).
stop process (quanta, I/O, interrupt) and save its state.
load state of another process.

}

 C
O

M
P 310 - Joseph V

ybihal 2006

6

Schedulers
(Mid-level Scheduler)

Did not have time to execute… Or system load too heavy…
Therefore, swap out of ready queue, put on Overload Queue.

 C
O

M
P 310 - Joseph V

ybihal 2006

7

Process Scheduling

This could be many queues

Load
dispatch terminate

“queue”

Pseudo-code and assembler discussion...

 C
O

M
P 310 - Joseph V

ybihal 2006

8

Multiple OS Run-Time Queues

Ready Head
Ready Tail
Disk Head
Disk Tail
Printer Head
Printer Tail
Network Head
Network Tail

Queue Headers
PCB PCB PCB

NULL

PCBPCB

NULL

NULL

PCB NULL

This is a double nested loop:
• For each queue
• Execute next PCB

May have their
own CPUs

Step
1

Step 2

 C
O

M
P 310 - Joseph V

ybihal 2006

9

Part 2

Mechanics of a Process

 C
O

M
P 310 - Joseph V

ybihal 2006

10

Process Creation

• Two ways to create a new process:
– Build one from scratch:

• Load code and data into memory
• Create (empty) a dynamic memory workspace (heap)
• Create and initialize the PCB
• Make process known to the process scheduler(dispatcher)

– Clone an exiting one:
• Stop current process and save its state
• Make a copy of code, data, heap and PCB
• Make process known to process scheduler (dispatcher)

 C
O

M
P 310 - Joseph V

ybihal 2006

11

Process Creation

Process 1 Syscall new-process

Process 2 Process 1
Original Parent Child

• Execute concurrently with child, or
• Sleep until child terminates

• Child overlay of parent, or
• Child is a copy, or
• Child is a different program

Syscall terminate-child
(P1 still executes)

End process 1
• OS auto terminates all children
 “cascading termination”

Syscall
new-process

End process 2

No effect on parent

• The OS
• User from command-line
• User’s program

 C
O

M
P 310 - Joseph V

ybihal 2006

12

The OS is Made of Processes
The Kernel

Loads user processes

Parents

Children

User Shell

Concurrent OS
Processes

 C
O

M
P 310 - Joseph V

ybihal 2006

13

Unix Process Creation

• In Unix, the fork() system call is used to
create processes
– fork() creates an identical copy of the calling

process
– After the fork(), the parent continues running

concurrently with the child competing equally
for the CPU.

 C
O

M
P 310 - Joseph V

ybihal 2006

14

 C
O

M
P 310 - Joseph V

ybihal 2006

15

 C
O

M
P 310 - Joseph V

ybihal 2006

16

 C
O

M
P 310 - Joseph V

ybihal 2006

17

C Programming Example
(Forking a Process)

Parent could have
executed concurrently

 C
O

M
P 310 - Joseph V

ybihal 2006

18

C Programming Example
(Created a Process with system)

 #include <string.h>
 #include <stdio.h>

 int main(void)
 {

char name[100];
char command[300];

printf(“File Name:”);
scanf(“%s”,name);

strcpy(command,”del ”);
strcat(command, name);

system(command);

printf(“Execution completed”);
 }

Child process created &
parent process sleeps
until child is complete.

 C
O

M
P 310 - Joseph V

ybihal 2006

19

Part 3

Inter-process Communication

 C
O

M
P 310 - Joseph V

ybihal 2006

20

Why Process Cooperation?

• Information Sharing
– Shared resources: files, variable, buffer, …

• Computation Speedup
– SETI computation (need multi-CPU/data channels)

• Modularity
– Programming requirements need concurrency

• Convenience
– Multi-windows to work concurrently

 C
O

M
P 310 - Joseph V

ybihal 2006

21

Classic Example
(Producer / Consumer Problem)

Consumer

Resource

A printer driver that sends data from
buffer to the printer

Circular buffer used to manage
this relationship

OUT

IN
Producer

A user process
printing with
fprintf(prn,…);

Note: a PRN runs much slower than a process in RAM.

In RAM

(Data structure for ptr in stdio.h, FILE *)

 C
O

M
P 310 - Joseph V

ybihal 2006

22

 fprintf(prn,…); Internal Code:

Printer driver’s code

 while(1) {
// Code to produce an item in nextProduced HERE
while (((in + 1) % BUFFER_SIZE) == out); // nothing
buffer[in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;

}

 while(1) {
while (in == out) ; // do nothing
nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
// Code the consume the item HERE

}

Unbounded-buffer or bounded-buffer?

 C
O

M
P 310 - Joseph V

ybihal 2006

23

Message Passing Systems

• Direct or indirect communication
– Share RAM? Use OS?

• Symmetric or asymmetric communication
– Take turns, Scheduled? No management?

• Automatic or explicit buffering
• Send by copy or by reference
• Fixed-size or variable sized messages

Process
P

Process
QCommunication

Link

 C
O

M
P 310 - Joseph V

ybihal 2006

24

Question
• How can we implement message passing

using a simple text file?
– One message at a time?
– Infinite messages?

 C
O

M
P 310 - Joseph V

ybihal 2006

25

Direct Communication
(Controlled Variable Sharing)

• Syntax:
– Send(pid, message);
– Receive(pid, buffer);

• Send: needs to know pid
• Receive: gives permission to receive
• Rules:

– Only 1 link can exist at any time
– This must be a binary link

message

1 producer

1 consumer

Discuss execution

 C
O

M
P 310 - Joseph V

ybihal 2006

26

Message
Passing

with Pipes

int main(int argc, char* argv[])
{
 int data_pipe[2]; /* an array to store the file descriptors of the pipe. */
 int pid; /* pid of child process, or 0, as returned via fork. */
 int rc; /* stores return values of various routines. */

 /* first, create a pipe. */
 rc = pipe(data_pipe);
 if (rc == -1) {

perror("pipe");
exit(1);

 }

 /* now fork off a child process, and set their handling routines. */
 pid = fork();

 switch (pid) {
case -1: /* fork failed. */
 perror("fork");
 exit(1);
case 0: /* inside child process. */
 do_child(data_pipe);
 /* NOT REACHED */
default: /* inside parent process. */
 do_parent(data_pipe);
 /* NOT REACHED */

 }

 return 0; /* NOT REACHED */
}

#include <stdio.h> /* standard I/O routines. */
#include <unistd.h> /* defines pipe(), amongst other things. */

 C
O

M
P 310 - Joseph V

ybihal 2006

27

Message
Passing

with Pipes

void do_parent(int data_pipe[])
{
 int c; /* data received from the user. */
 int rc; /* return status of getchar(). */

 /* first, close the un-needed read-part of the pipe. */
 close(data_pipe[0]);

 /* now enter a loop of read user input, and writing it to the pipe. */
 while ((c = getchar()) > 0) {

/* write the character to the pipe. */
 rc = write(data_pipe[1], &c, 1);

if (rc == -1) { /* write failed - notify the user and exit */
 perror("Parent: write");
 close(data_pipe[1]);
 exit(1);

 }
 }

 /* probably got EOF from the user. */
 close(data_pipe[1]); /* close the pipe, to let the child know we're done. */
 exit(0);
}

 C
O

M
P 310 - Joseph V

ybihal 2006

28

Message
Passing

with Pipes

void do_child(int data_pipe[]) {
 int c; /* data received from the parent. */
 int rc; /* return status of read(). */

 /* first, close the un-needed write-part of the pipe. */
 close(data_pipe[1]);

 /* now enter a loop of reading data from the pipe, and printing it */
 while ((rc = read(data_pipe[0], &c, 1)) > 0) {

putchar(c);
 }

 /* probably pipe was broken, or got EOF via the pipe. */
 exit(0);
}

 C
O

M
P 310 - Joseph V

ybihal 2006

29

Direct Communication
(Copied Memory)

 int msg;

while (!done)
{

scanf(“%d”,&msg);
x = fork();
if (x == 0)
{…}
else
{…}

}

Child process has msg also, but
is a copy.

 C
O

M
P 310 - Joseph V

ybihal 2006

30

Indirect Communication
• Use of third party:

– Mailbox file: append to end of file messages
– Port queue: insert into queue messages

• Syntax:
– Send(portid, message);
– Receive(portid, buffer);

• Rules:
– Must know port or mailbox ID
– Not a binary link, any process can send
– Only one process can receive
– Each mailbox/port has its rules of communication

• Queue technique (priority rules, regular)
• ASCII or UNICODE or Binary

mailbox

consumer

N producers

Implemented as a text file
or a database.

 C
O

M
P 310 - Joseph V

ybihal 2006

31

Synchronization Types
• Blocking send (synchronization)

– Sending process is put to sleep until received
• Non-blocking send (asynchronous)

– Sender sends and continues execution
• Blocking receive (synchronization)

– Receiver waits in busy-loop/ sleep-interrupt until
message

• Non-blocking receive
– Look at mailbox, if (message) good else NULL

“Rendezvous”

 C
O

M
P 310 - Joseph V

ybihal 2006

32

Buffered Communication
• Zero Capacity Buffer

– Buffer does not exist, must use synchronization
– OS or Programmer Problem? Implementation?

• Bounded Capacity Buffer
– If space, add message and continue execution,

otherwise busy-loop until space
– OS or Programmer Problem? Implementation?

• Unbounded Capacity Buffer
– Send message regardless of space (assume

infinite space) and continue execution
– OS or Programmer Problem? Implementation?

 C
O

M
P 310 - Joseph V

ybihal 2006

33

Part 4

Examples

 C
O

M
P 310 - Joseph V

ybihal 2006

34

Windows

 C
O

M
P 310 - Joseph V

ybihal 2006

35

Windows 2000 Technology
(2000, Millennium, XP)

• “Subsystems”
– Multiple operating environments
– Message-passing control mechanism
– Processes are clients of a particular subsystem
– Binary communication is provided by an object

called a port. The port has a send, receive, buffer
and an optional queue.

• Port Management
– OS initializes public Port Manager objects, one

for each subsystem.

 C
O

M
P 310 - Joseph V

ybihal 2006

36

• Port Management (continued)
– Client gets handle (ptr) of port manager
– Client requests for communication
– Port Manager creates a port object with a TOOS

and FROMOS port ID numbers. Returns handle
of port object to client.

– Client and OS use handle to communicate

Windows 2000 Technology
(2000, Millennium, XP)

 C
O

M
P 310 - Joseph V

ybihal 2006

37

Internet

 C
O

M
P 310 - Joseph V

ybihal 2006

38

Internet Technology
(Java Sockets)

• Send(ip:port, message);
• Similar to Windows 2000

Internet
Process P Process Q

socket

Public IP

Private port ID

socket

Public IP

Private port ID

 C
O

M
P 310 - Joseph V

ybihal 2006

39

Create a socket

Process to use socket

Terminate communication

 C
O

M
P 310 - Joseph V

ybihal 2006

40

Socket object

Ask for connection

Read from socket

Terminate connection

 C
O

M
P 310 - Joseph V

ybihal 2006

41

Standard Connections

• TELNET is port 23
• FTP is port 21
• HTTP is port 80
• < 1024 are all pre-defined and known
• >= 1024 are private and local to computer

– This is not a rule, just an agreement

 C
O

M
P 310 - Joseph V

ybihal 2006

42

At Home

 C
O

M
P 310 - Joseph V

ybihal 2006

43

Things to try out
1. Download a program called ETHEREAL

and listen to the network and port
communication on your computer.

• The McGill labs lock you out
• So try this at home - you’ll need to be on a

network. If you do not have a network then
the program has sample files to study.

• Google Ethereal
• Internet resources:

• http://users.actcom.co.il/~choo/lupg/tutorials/
multi-process/multi-process.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

